Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 21784
Training / Education Classroom Seminars
This one day seminar presents an overview of seals and sealing system design for military and commercial aircraft. It is aimed to provide engineers having some previous actuator and control valve design background with an understanding of the general hardware groove standards, standard parts for static applications and how seal designs and sealing systems can be best used in dynamic reciprocating and rotary applications. Information will be provided regarding seal material and fluid compatibility, friction drag, expected wear rates depending on operating conditions and duty cycle, hardware surface finish and topography.
2018-06-20 ...
  • June 20, 2018 (8:30 a.m. - 4:30 p.m.) - Hamburg, Germany
Training / Education Classroom Seminars
The challenges associated with using composites as a replacement for aluminum reside primarily in the complex manufacturing processes and technologies for fabricating composite parts. The high cost of composites material and its manufacturing complexity have been inhibitors to the wide transfer of this technology to the non-aerospace market. The search for solutions to high manufacturing costs and efficient manufacturing processes have resulted in intense research by government, aerospace industry companies, and space agencies worldwide.
2018-06-07 ...
  • June 7-8, 2018 (8:30 a.m. - 4:30 p.m.) - Shanghai, China
  • August 30-31, 2018 (8:30 a.m. - 4:30 p.m.) - Cleveland, Ohio
Training / Education Classroom Seminars
The requirements for producing an FAA approved replacement part can be daunting. Understanding the steps required in the FAA Parts Manufacturer Approval (PMA) process can greatly streamline the approval life-cycle and reduce unnecessary costs and delays, thereby shortening the time and cost to market. This course is designed for those organizations and individuals interested in designing and manufacturing replacement parts for civil aviation aircraft. This two-day course covers the crucial subjects and steps of the FAA-PMA approval process.
2018-05-01 ...
  • May 1-2, 2018 (8:30 a.m. - 4:30 p.m.) - El Segundo, California
  • October 11-12, 2018 (8:30 a.m. - 4:30 p.m.) - Greenville, South Carolina
  • November 8-9, 2018 (8:30 a.m. - 4:30 p.m.) - London, United Kingdom
Training / Education Classroom Seminars
The avionics hardware industry world-wide is now commonly required to follow DO-254 Design Assurance Guidance for Airborne Electronic Hardware for literally all phases of development: Safety, Requirements, Design, Logic Implementation, V&V, Quality Assurance, etc. The DO-254 standard is a companion to the software DO-178B standard; however, there are many differences between hardware and software which must be understood. This basic course introduces the intent of the DO-254 standard for commercial avionics hardware development.
2018-03-21 ...
  • March 21-22, 2018 (8:30 a.m. - 4:30 p.m.) - Durham, North Carolina
  • May 23-24, 2018 (8:30 a.m. - 4:30 p.m.) - Warrendale, Pennsylvania
  • September 10-11, 2018 (8:30 a.m. - 4:30 p.m.) - Warrendale, Pennsylvania
Training / Education Classroom Seminars
The requirements of the AS9120, Rev. B, EN9120B and JIAQ9120B Standards have significantly changed and are based on the NEW ISO9001:2015 Standard. This two-day training program is designed to provide individuals with the knowledge necessary to understand and comprehend the NEW requirements described in AS9120 Rev. B, Quality Management Systems – Requirements for Aviation, Space, and Defense Distributors. The course includes classroom instruction combined with class exercises to further reinforce concepts and definitions now required by the standard.
2018-03-05 ...
  • March 5-6, 2018 (8:30 a.m. - 4:30 p.m.) - Durham, North Carolina
  • June 11-12, 2018 (8:30 a.m. - 4:30 p.m.) - Warrendale, Pennsylvania
Training / Education Classroom Seminars
Individuals responsible for quality management system, implementation, and transition to the AS9100:2016 series of standards for Aviation, Space, and Defense will require an understanding of the requirements for the preparation and execution of the audit process as defined in these revised standards. Management and implementers of AS9100:2016 Rev. D within these organizations must also be aware of what these changes may mean for their company.
2018-02-12 ...
  • February 12-13, 2018 (8:30 a.m. - 4:30 p.m.) - Cleveland, Ohio
  • June 4-5, 2018 (8:30 a.m. - 4:30 p.m.) - Shanghai, China
  • July 9-10, 2018 (8:30 a.m. - 4:30 p.m.) - Warrendale, Pennsylvania
  • November 12-13, 2018 (8:30 a.m. - 4:30 p.m.) - El Segundo, California
Training / Education Classroom Seminars
Part 21 is the FAA regulation that provides the regulatory framework to conduct certification of products and parts. This includes the engineering, airworthiness, production and quality systems. The aerospace industry is hinged around compliance with Part 21; however, comprehension of Part 21 and its role in civil certification is challenging. This course is designed to provide participants with an understanding of the processes that encompass aircraft certification, including compliance with FARs, certification procedures and post certification responsibilities.
2010-10-25
Journal Article
2010-01-2172
James P. Szybist, Eric Nafziger, Adam Weall
A spark-assist homogeneous charge compression ignition (SA-HCCI) operating strategy is presented here that allows for stoichiometric combustion from 1000-3000 rpm, and at loads as high as 750 kPa net IMEP. A single cylinder gasoline engine equipped with direct fuel injection and fully variable hydraulic valve actuation (HVA) is used for this experimental study. The HVA system enables negative valve overlap (NVO) valve timing for hot internal EGR. Spark-assist stabilizes combustion over a wide range of engine speeds and loads, and allows for stoichiometric operation at all conditions. Characteristics of both spark-ignited combustion and HCCI are present during the SA-HCCI operating mode, with combustion analysis showing a distinctive spark ignited phase of combustion, followed by a much more rapid HCCI combustion phase. At high load, the maximum cylinder pressure rise rate is controlled by a combination of spark timing and retarding the intake valve closing angle.
2010-10-25
Technical Paper
2010-01-2225
Alberto Boretti
Downsizing and Turbo Charging (TC) and Direct Injection (DI) may be combined with Variable Valve Actuation (VVA) to better deal with the challenges of fuel economy enhancement. VVA may control the load without throttle; control the valve directly and quickly; optimize combustion, produce large volumetric efficiency. Benefits lower fuel consumption, lower emissions and better performance and fun to drive. The paper presents an engine model of a 1.6 litre TDI VVA engine specifically designed to run pure ethanol, with computed engine maps for brake specific fuel consumption and efficiency. The paper also presents driving cycle results obtained with a vehicle model for a passenger car powered by this engine and a traditional naturally aspirated gasoline engine. Preliminary results of the VVA system coupled with downsizing, turbo charging and Direct Injection permits significant driving cycle fuel economies.
2010-09-28
Technical Paper
2010-32-0059
Silvio Barbarelli, Sergio Bova, Rocco Piccione
Variable-displacement lubricating pumps are an attractive solution for reducing fuel consumption and emissions in motorcycle engines. In this prospective, modeling and experimental analysis are very useful means for a deeper understanding of pump operation and for effectively implementing pump control. Zero-dimensional simulation results of a 7-vane pump were compared with the experimental data of dynamic piezo-resistive pressure transducers fitted into the casing of a pump prototype, which was operated under steady-state conditions at different rotational speeds and eccentricity values. The experimental data exhibit oscillations which were explained by taking into account the pressure transducers dynamics, as a result of the transducer location in the pump casing, of the air dissolved in the hydraulic fluid and of the geometry of the tubing/transducer system.
2010-10-25
Technical Paper
2010-01-2146
Massimo Rundo
Scope of this work is the analysis of the energy consumed by lubricating gear pumps for automotive applications during a driving cycle. This paper presents the lumped parameter simulation model of gerotor lubricating pumps and the comparison between numerical outcomes and experimental results. The model evaluates the power required to drive the pump and the cumulative energy consumed in the driving cycle. The influence of temperature variations on leakage flows, viscous friction torque and lubricating circuit permeability is taken into account. The simulation model has been validated by means of a test rig for hydraulic pumps able to reproduce the typical speed, temperature and load profiles during a NEDC driving cycle. Experimental tests, performed on a crankshaft mounted pump for diesel engines, have confirmed a good matching with the simulation model predictions in terms of instantaneous quantities and overall energy consumption.
2010-10-05
Technical Paper
2010-01-2008
Yang Yang, Benjamin Morris, William Liou
Recent studies have shown that hydraulic hybrid drivelines can significantly improve fuel savings for medium weight vehicles on stop-start drive cycles. In a series hydraulic hybrid (SHH) architecture, the conventional mechanical driveline is replaced with a hydraulic driveline that decouples vehicle speed from engine speed. In an effort to increase the design space, this paper explores the use of a fixed displacement checkball piston pump in an SHH driveline. This paper identifies the potential life-limiting components of a fixed displacement checkball piston pump and examines the likelihood of surface fatigue in the check valves themselves. Numerical analysis in ABAQUS software suggests that under worst case operating conditions, cyclic pressure loading will result in low-cycle plastic deformation of check valve surfaces.
2010-10-25
Technical Paper
2010-01-2236
Randy P. Hessel, Richard Steeper, Russell Fitzgerald, Salvador Aceves, Daniel Flowers
Recently experiments were conducted on an automotive homogeneous-charge-compression-ignition (HCCI) research engine with a negative-valve-overlap (NVO) cam. In the study two sets of experiments were run. One set injected a small quantity of fuel (HPLC-grade iso-octane) during NVO in varying amounts and timings followed by a larger injection during the intake stroke. The other set of experiments was similar, but did not include an NVO injection. By comparing both sets of results researchers were able to investigate the use of NVO fuel injection to control main combustion phasing under light-load conditions. For this paper a subset of these experiments are modeled with the computational-fluid-dynamics (CFD) code KIVA3V [ 6 ] using a multi-zone combustion model. The computational domain includes the combustion chamber, and intake and exhaust valves, ports, and runners. Multiple cycles are run to minimize the influence of initial conditions on final simulated results.
2010-04-12
Technical Paper
2010-01-0385
Xiaobin Ning, Bin Meng, Jian Ruan
It is known that for automotive semi-active suspension the damping of shock absorber shall be continuously adjustable. One approach for damping adjustment is via adjusting flow area of throttle valve of shock absorber using stepping motor. Throttle valve can be realized using electro-magnetic valve or any other type of driving valve. In order to be applied on semi-active suspension, the throttle valve is required to have high control precision, fast response speed, strong anti-pollution capability and etc.. In this paper a new type of digital valve is presented to control the flow area of shock absorber. The configuration is developed by the utilization of the two-motions-degree of freedom of a single spool. To solve the contradiction between the response speed and the quantitative accuracy which characterizes the previous valve of the same sort, a specially designed tracking program is adopted to the stepping motor control to smooth displacement output.
2010-04-12
Technical Paper
2010-01-0389
Abhijit Vishnu Londhe, Dinesh Kalani, Aabid Ali
This paper describes application of Design of Experiments (DOE) technique and optimization for mass reduction of a Sports utility vehicle (SUV) body in white (BIW). Thickness of the body panels is taken as design variable for the study. The BIW global torsion, bending and front end modes are key indicators of the stiffness and mass of the structure. By considering the global modes the structural strength of the vehicle also gets accounted, since the vehicle is subjected to bending and twisting moments during proving ground test. The DOE is setup in a virtual environment and the results for different configurations are obtained through simulations. The results obtained from the DOE exercise are used to check the sensitivity of the panels. The panels are selected for mass reduction based on the analysis of the results. This final configuration is further evaluated for determining the stiffness and strength of the BIW.
2010-04-12
Technical Paper
2010-01-0390
Sangdo Park, Jong-Kweon Pyun, Byung Yong Choi, Dongwoo Jeong, HakGyun Kim
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
2010-04-12
Technical Paper
2010-01-0391
Peter T. Bovenzi, Don Bender, Ray Bloink, Michael Conklin, John Abrahamian
In today's dynamic automotive environment, reducing the lead-time to introduce new product technologies to the market place can be a key competitive advantage. Employing proactive risk reduction techniques to define key product and process relationships is essential to enhance the production worthiness of a design while it is still in the advanced development phase of the program. This paper describes how Delphi Powertrain Systems applied the Shainin proactive risk reduction methodology in advanced product development to focus resources on understanding and mitigating the risk associated with the development of a new Delphi ammonia sensor. Organizational and technical strategies to accelerate profound knowledge capture, along with corresponding test results, are presented and discussed.
2010-04-12
Technical Paper
2010-01-0392
Mukul Mitra, Shaiju M. Belsus
The primary factors influencing vehicle's dynamic behavior are the vehicle hard point definition, driver behavior and road inputs. The more the latter two are random and incorrigible in nature, the former one is quantifiable and can be controlled from designer's standpoint. In this paper, we have made an attempt to set targets to the vehicle hard point definition and thereby to optimize the vehicle for better ride behavior. This approach hence helped to converge to vehicle specifications set fundamentally designed to respond to random operating conditions and driving behavior intelligently. The work also involves study of various methodologies to predict roll, pitch, bounce and dive behaviors on a typical commercial passenger vehicle and is concluded by a sensitivity analysis to understand significance of these hard points on vehicle's real time behavior.
2010-04-12
Journal Article
2010-01-0393
Baeyoung Kim, Hyunjun Kim, YoungTak Son, Hae-ryong Kim, Haekyung Kim, Myung-Won Suh
The noise of interior plastic parts has been one of the major driving factors in the design of automotive interior assemblies. This phenomenon is one of the major contributors to the perceived quality in a vehicle. The noise is caused by interior plastic parts and other parts as a result of permanent deformation. Traditionally, noise issues have been identified and rectified through extensive hardware testing. However, to reduce the product development cycle and minimize the number of costly hardware builds, hardware testing must rely on engineering analysis and upfront simulation in the design cycle. In this paper, an analytical study to reduce permanent deformation in a cockpit module is presented. The analytical investigation utilizes a novel and practical methodology, which is implemented through the software tools, ABAQUS and iSight, for the identification and minimization of permanent deformation.
2010-04-12
Technical Paper
2010-01-0395
Feng Pan, Ping Zhu
Lightweight vehicle design has become an imperative in today's automotive industry. And it is a difficult task, which usually involves non-obvious decisions beyond the designer's intuition. In practice, optimization through finite element simulation is prohibitively inappropriate due to massive computational cost. As a consequence, approximation method is extensively used. In this paper, lightweight design of front side rail through high strength steel is performed. And the advantages of weighted average surrogate (WAS) for approximating the crashworthiness responses in frontal crash are also discussed. It shows the strategy of using WAS is effective, with great potential applications for vehicle crashworthiness approximation and lightweight design.
2011-04-12
Journal Article
2011-01-0402
P. Lingeswaramurthy, J. Jayabhaskar, R. Elayaraja, J. Suresh Kumar
Increasing the efficiency of the Engine parts and reduction in development time with good accuracy are the challenges in the Automotive Industry. Lubricating oil pump has been selected for this study. Existing literatures explain the methodology to generate the rotor profile from the given geometrical parameters of the rotor like eccentricity, tooth radius etc. Invariably the specifications to design the pump are provided in terms of pump performance at various operating conditions. The analytical model developed in this study uses the performance and boundary specifications to generate the rotor profile and to estimate the flow rate at various operating conditions of the pump. This methodology includes the generation of trochoidal profile for inner rotor and modified conjugate profile for the outer rotor and the volume calculation of number of chambers (N) which are created between the rotors during meshing.
2011-04-12
Technical Paper
2011-01-0390
Naoki Kurimoto, Masayuki Suzuki, Mutsumi Yoshino, Yoshiaki Nishijima
A response surface model of a diesel spray, parameterized by the internal geometries of a nozzle, is established in order to design the nozzle geometries optimally for spray mixing. The explanatory variables are the number of holes, the hole diameter, the inclined angle, the hole length, the hole inlet radius, K-factor and the sac diameter. The model is defined as a full second-order polynomial model including all the first-order interactions of the variables, and a total of 40 sets of numerical simulations based on D-optimal design are carried out to calculate the partial regression coefficients. Partial regression coefficients that deteriorate the estimate accuracy are eliminated by a validation process, so that the estimate accuracy is improved to be ±3% and ±15% for the spray penetration and the spread, respectively. Then, the model is applied to an optimization of the internal geometries for the spray penetration and the spray spread through a multi-objective genetic algorism.
2011-04-12
Technical Paper
2011-01-0419
Masayuki Shimizu, Kazunori Yageta, Yoshinori Matsui, Takahiro Yoshida
This paper describes a new 1.6-liter four-cylinder gasoline turbocharged engine with a direct injection gasoline (DIG) system and a twin continuously variable valve timing control (CVTC) system. Demands for higher environmental performance make it necessary to improve engine efficiency further. At the same time, improvement of power performance is important to enhance the appeal of vehicles and make them attractive to consumers. In order to meet these requirements, a 1.6-liter direct injection gasoline turbocharged engine has been developed. By using many friction reduction technologys, this engine achieves the high power performance of a 2.5-liter NA(Naturally Aspirated) gasoline engine and low fuel consumption comparable to that of a smaller displacement engine. In addition, this engine achieves low exhaust emission performance to comply with the US LEV2-ULEV and EU Euro5 emission requirements.
2011-04-12
Technical Paper
2011-01-0411
H Pandarinath, J Sureshkumar, Ramalingam Sivanantham, S Prabhakar, S R Nagendiran
Vacuum pumps are predominantly used in diesel engines of passenger cars and trucks for generating vacuum in servo brake applications. With the emission norms getting stringent, there is a need for vacuum signal for EGR actuation, turbo-charger waste gate actuation and other servo applications. These multi-functional applications of vacuum pumps and the functional criticality in application like braking system demand an effective and reliable performance. In gasoline engines, the vacuum generated in the intake manifold is tapped for braking. The recent technology of gasoline direct injection compels the use of vacuum pump in gasoline engines also due to scarce vacuum in intake manifold. The performance of the vacuum pump is highly dependent on the opening and closing of the check valve sub-system, which is positioned between the vacuum reservoir and the pump at the suction side.
2011-04-12
Technical Paper
2011-01-0414
S. Loganathan, Ramalingam Sivanantham, J. Sureshkumar, S. Prabhakar, Srinivasan Seethapathy
The main challenge in designing the oil pump for gasoline & diesel engines is to optimize the pressure relief passage. Pressure relief passage is critical from design point of view as it maintains the oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfactory performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area will also reduce the power consumed by the pump. The Pressure relief system for this study consists of Pressure relief valve, spring, retainer, pressure relief passages. It is difficult to directly measure the flow through the pressure relief passage and is arrived based on the drop in flow at the delivery port. Numerical tool will be handy to predict the flow through the pressure relief passage and this can be used to optimize the flow through the bypass passage.
2011-04-12
Technical Paper
2011-01-0689
Vishwas Vaidya, Anand Patidar
Automotive embedded control systems need to implement real-time closed-loop control strategies for controlling valves, motors, etc. The implementation needs to focus on use of low cost hardware and efficient software with minimal foot-print so as to adequately meet the application requirement. This paper highlights the low cost hardware and software design concepts by way of a case study related to control of progressive EGR valve. The control strategy is based on "map-driven set-points" where percentage opening of the valve is stored in the form of 16x16 matrices. The set-points are accessed based on instantaneous throttle and engine rpm values which form the row and column indices of the map. The closed loop control algorithm eliminates the need for multiplication by implementing "feed-forward with integral control algorithm." A feed-forward map specifies the most likely PWM duty cycle to be applied to the valve for a given set-point.
2010-04-12
Technical Paper
2010-01-1111
Karthikeyan Natchimuthu, Jayanthamani Sureshkumar, V. Ganesan
Increasing the efficiency of engine auxiliary systems have become a challenge. Oil pump, identified for this study, is one such engine system which is used for lubrication of engine parts. To achieve higher efficiencies, there is a need for math-based analysis and design. This can be achieved by means of Computational Fluid Dynamics (CFD). The main aim of this paper is to simulate the flow through Gerotor Oil pump using Computational Fluid Dynamics. A 3D model of the entire flow domain is created and meshed in preprocessor GAMBIT. The mesh for various pressure outlet conditions is exported to FLUENT solver for analysis. The predicted results are validated with the experimental results. The comparison shows that the CFD predictions are in good agreement with experimental results. In particular, such a simulation offers a scope for visualizing the flow through the Gerotor oil pump.
2010-04-12
Technical Paper
2010-01-1102
Ramalingam Sivanantham, J. Sureshkumar
Emerging trend in the automotive industry all around the world is to develop vehicles to consume less fuel and to meet stringent emission norms by using engines of higher power to weight ratio and higher thermal efficiency. These advanced technology engines designed for high power output will use low viscous oil to reduce frictional losses and will operate at elevated temperature levels. Hence, the various auxiliaries and parts of these engines should be adaptable for the use of low viscous oil and should withstand higher temperatures. Oil pump is one such auxiliary which will be subjected to work with low viscous oil at higher temperatures levels. The oil pump taken for study and design improvement is an internal gear type positive displacement oil pump, used in a passenger car diesel engine. The un-meshing of the gears causes the inflow and meshing causes the outflow of lubricating oil. This process occurs continuously for providing a smooth pumping action.
2010-05-05
Technical Paper
2010-01-1540
Georges Vretos Glyniadakis, Alexandre Bercelos de Souza, Mauro Miguel Pecula, Marlon Casagrande Rodrigues, Jose Maria Dos Santos
Sound quality requirements have been more often used in light and heavy duty trucks market. Then, vehicle owners fell uncomfortable with rattle noise mainly at idle speed with air compressor operating in load phase. Sometimes they associate this noise as a failure, which can generate a car shop dealer claim, as well as product and company image deterioration. One option to deal with this kind of noise is to apply an anti-backlash gears. The literature shows that as we decrease the backlash the rattle is reduced too. Then, to understand the effect of this solution is mandatory before to apply into production. The object of this work is to study the vibroacoustics effects of the anti-backlash gear system regarding to the air compressor rattle noise of the MWM ACTEON 4.12TCE diesel engine. The angular displacement and velocities fluctuation of the air compressor anti-backlash gear were analyzed in order to characterize the air compressor gear rattle.
2010-04-12
Journal Article
2010-01-0509
Takashi Yoshizawa, Yoko Tsukada, Shinji Seto, Kenji Hiraku, Yasuhiro Sato, Jun Soeda
In response to the growing demand for fuel economy, we are developing a high-efficient variable displacement pump for hydraulic power steering systems. In order to develop a quiet variable displacement pump which generates lower noise for better vehicle interior sound quality, we have been developing a simulation tool which includes hydraulic analysis, vibration analysis, and vehicle interior noise analysis which combines simulation outputs and measured noise transfer functions of the targeted vehicle. This paper provides both validation results of the simulation tool and application examples to design improvement to conclude the effectiveness of the simulation tool developed.
Viewing 1 to 30 of 21784

Filter

  • Range:
    to:
  • Year: