Criteria

Text:
Display:

Results

Viewing 1 to 30 of 14432
Training / Education
Improved understanding and control of ignition and thereby combustion are critical in dealing with the problems of pollutants formation, engine performance, and fuel economy. This seminar will provide you with basic knowledge and recent advances in combustion-initiation (ignition) issues to more intelligently evaluate and harness their potentials. Thermodynamic and fluid mechanical properties of the unburned charge near the spark plug and at the time of ignition strongly affect the quality of the combustion and therefore the emission of the pollutants from the engine. Furthermore, a weak ignition limits engine performance and drivability.
Training / Education
The engine control module (ECM, or on-board computer) is the tool used to control the fuel injection rate, fuel injection timing, ignition timing, rate of exhaust gas recirculation (EGR), and other functions. The task of "programming" the ECM is much easier for a race engine than for a production engine because the calibration engineer does not need to be concerned about emissions: EGR, keeping the exhaust catalyst "happy", etc. This course provides a practical introduction to ECMs, including the uses for the various sensors.
Training / Education
Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains. This two day seminar will cover the fundamentals of HEV powertrain design.
2018-09-17
Training / Education
The need to control emissions and maintain fuel economy is driving the use of advanced turbocharging technology in both diesel and gasoline engines. As the use of diesel engines in passenger car gasoline and diesel engines increases, a greater focus on advanced turbocharging technology is emerging in an effort to reap the benefits obtained from turbocharging and engine downsizing. This seminar covers the basic concepts of turbocharging of gasoline and diesel engines (light and heavy duty), including turbocharger matching and charge air and EGR cooling, as well as associated controls.
2018-06-18
Training / Education
Engine valvetrain systems have become more capable and increasingly more compact in the quest to improve efficiency. The developments parallel the advancements in other key engine components such as fuel injection or spark systems, turbocharging, aftertreatment, base engine and controls. While the gasoline sector has seen a steady rise in the adoption of Variable Valve Actuation (VVA), Diesel systems have lagged behind and only a few systems have seen production. The level of VVA activity however in the Diesel sector is beginning to increase as tighter regulations of CO2 emissions approach.
2018-06-13
Training / Education
Societal and regulatory demands to lower emissions and increase engine-operating efficiencies have forced engine designers to adopt new technologies and control strategies. This has resulted in dramatic evolutions of the technology of internal combustion engines and their support systems in recent years. These operational management strategies have evolved into more robust control systems and sensory packages, which in turn has driven the need for more accurate and specific information being communicated between the various systems found within a modern automobile.
2018-05-07
Training / Education
Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
2018-03-27
Training / Education
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
2018-03-20
Training / Education
Driven by the need for lower emissions, better fuel economy and improved drive quality, optimized powertrain calibrations are required for the many different vehicle configurations on today's roadways. While powertrain components such as the internal combustion engine, transmission, and hybrid electric powertrain are somewhat familiar to the automotive industry, the control theory, calibrations and system interactions between these components are a relatively unfamiliar aspect.
2018-03-06
Training / Education
Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
2018-02-20
Training / Education
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2018-02-12
Training / Education
In your profession, an educated understanding of internal combustion engines is required, not optional. This two-day technology survey seminar covers the most relevant topics - ranging from the chemistry of combustion to the kinematics of internal components of the modern internal combustion engine - for maximum comprehension. Attendees will gain a practical, hands-on approach to the basics of the most common designs of internal combustion engines, as they apply to the gaseous cycles, thermodynamics and heat transfer to the major components, and the design theories that embody these concepts.
2018-02-12
Training / Education
The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems.
2010-10-25
Journal Article
2010-01-2223
Alessandro di Gaeta, Umberto Montanaro, Silvio Massimino, Carlos Ildefonso Hoyos Velasco
Nowadays, developing of effective camless engine systems, allowing Variable Valve Actuation (VVA), is one of the fundamental automotive challenge to increase engine power, reduce fuel consumption and pollutant emissions, as well as improve the engine efficiency significantly. Electromechanical devices based on double electromagnets have shown to be a promising solution to actuate engine valves during normal engine cycle due to their efficient working principle. Conversely, this solution requires special care at the key-on engine for the first valve lift, when the valve must be shifted from the middle equilibrium position to the closing one with limited coil currents and power requirements as well. Despite the central role of the first catching problem, few attempts have been done into the existing literature to tackle it systematically.
2010-10-25
Technical Paper
2010-01-2225
Alberto Boretti
Downsizing and Turbo Charging (TC) and Direct Injection (DI) may be combined with Variable Valve Actuation (VVA) to better deal with the challenges of fuel economy enhancement. VVA may control the load without throttle; control the valve directly and quickly; optimize combustion, produce large volumetric efficiency. Benefits lower fuel consumption, lower emissions and better performance and fun to drive. The paper presents an engine model of a 1.6 litre TDI VVA engine specifically designed to run pure ethanol, with computed engine maps for brake specific fuel consumption and efficiency. The paper also presents driving cycle results obtained with a vehicle model for a passenger car powered by this engine and a traditional naturally aspirated gasoline engine. Preliminary results of the VVA system coupled with downsizing, turbo charging and Direct Injection permits significant driving cycle fuel economies.
2010-09-28
Technical Paper
2010-32-0046
P. Shanmugam, T. Kathiresan, N. Senthilnathan, AS. Anbukarasu, R. Vinoth Balaram, K. Prabu, MG. Naveenkumar
Pollutants are harmful to human and other living beings on the earth. Thus emission reduction plays a very important role in the survival of living beings. Hydrocarbons (HC), Carbon monoxide (CO), Nitrogen oxides (NOx) are the emission constituents which results in smog, respiratory problems in human beings, acid rain respectively. Hence, Indian government has taken necessary steps to reduce these emissions and imposed various level of norms like BSI, BSII and BSIII on 2/3 wheeler industries in the year 2000, 2005 and 2010 respectively. Presently in India, BSII is in force and from October 2010 BSIII will be introduced. BSIII 3 wheeler norm, the CO emission level is reduced by 44.4% and HC+NOx is reduced by 37.5%. The main objective of this work is to reduce the emissions like HC, which is due to unburnt fuels, NOx, which is due to high engine pressures and temperatures and CO, which is a byproduct of incomplete combustion.
2010-09-28
Technical Paper
2010-32-0060
Rainer Aufischer
Environmental regulations all over the globe and the demand on fuel efficient engines have increased bearing loads dramatically over the last 20 years, especially in small and high speed Diesel engines. Lead containing Bronze bearings, often with a Lead based overlay have become a standard in the automotive industry and are used over decades. Due to the harmful and poisonous effect of lead on the environment the European Union has set up the Vehicle end-of-life Regulation to reduce use of lead, also in tribological products. In order to fulfill the high load capability and the necessary tribological behavior of engine bearings new approaches in fatigue, temperature stability and Tribology has to be taken. Basic investigation of the tribological working principles in bearings combining short term failure mechanism and long term behavior were carried out to understand the interaction of materials, layers and lubrication.
2010-09-28
Technical Paper
2010-32-0059
Silvio Barbarelli, Sergio Bova, Rocco Piccione
Variable-displacement lubricating pumps are an attractive solution for reducing fuel consumption and emissions in motorcycle engines. In this prospective, modeling and experimental analysis are very useful means for a deeper understanding of pump operation and for effectively implementing pump control. Zero-dimensional simulation results of a 7-vane pump were compared with the experimental data of dynamic piezo-resistive pressure transducers fitted into the casing of a pump prototype, which was operated under steady-state conditions at different rotational speeds and eccentricity values. The experimental data exhibit oscillations which were explained by taking into account the pressure transducers dynamics, as a result of the transducer location in the pump casing, of the air dissolved in the hydraulic fluid and of the geometry of the tubing/transducer system.
2010-10-05
Technical Paper
2010-01-2054
Cenk Dinc, Ozgur Arslan, Tolga Akgun, Roger Almenar
The purpose of this study is to present the effects of several design actions on engine cooling performance of a heavy duty construction truck, with the aid of numerical and experimental investigations. The design actions involve the modifications of the front end geometry and implementation of different heat exchangers and fans. The sensitivity of engine cooling performance related to the concerned design changes is monitored with the variation in the engine coolant temperature. Numerical investigations are carried out with the Reynolds averaged Navier Stokes Equations based CFD solver, UH3D, and the results are validated with the experiments conducted at Behr wind tunnel facilities in Stuttgart. It is seen that the experimental results show good correlation with the CFD simulations.
2010-10-25
Technical Paper
2010-01-2154
Alberto Boretti
Current flexi fuel gasoline and ethanol engines have brake efficiencies generally lower than a dedicated gasoline engines because of the constraints to accommodate a variable mixture of the two fuels. Considering ethanol has a few advantages with reference to gasoline, namely the higher octane number and the larger heat of vaporization, the paper explores the potentials of dedicated pure ethanol engines using the most advanced techniques available for gasoline engines, specifically direct injection, turbo charging and variable valve actuation. Computations are performed with state-of-the-art, well validated, engine and vehicle performance simulations packages, generally accepted to produce accurate results targeting major trends in engine developments. The higher compression ratio and the higher boost permitted by ethanol allows larger top brake efficiencies than gasoline, while variable valve actuation produces small penalties in efficiency changing the load.
2010-10-25
Technical Paper
2010-01-2155
Stefan de Goede, Tiaan Rabe, Riaan Bekker, Sibusiso Mtongana, John Edwards
Direct Injection Spark Ignition (DISI) engine technology is becoming increasingly common in the South African and global vehicle parcs. South Africa is in a unique position because a significant portion of all liquid fuels consumed are synthetically produced from coal and gas. These fuels are mainly supplied into the inland regions, particularly the Gauteng province, the economic heartland of South Africa and the most densely populated area in the country. It is important to understand the performance of synthetic fuels in the latest generation engines, in order to ensure that these fuels are fit for use in these new applications. The latest generation DISI gasoline engines (also known as Gasoline Direct Injection™ and Fuel Stratified Injection™) differ significantly in operation to older Port-Fuel-Injected (PFI) engines.
2010-10-25
Journal Article
2010-01-2152
Heechang Oh, Choongsik Bae, Kyoungdoug Min
An experimental study was performed to evaluate the effects of ethanol blending on to gasoline spray and combustion characteristics in a spray-guided direct-injection spark-ignition engine under lean stratified operation. The spray characteristics, including local homogeneity and phase distribution, were investigated by the planar laser-induced fluorescence and the planar Mie scattering method in a constant volume chamber. Therefore, the single cylinder engine was operated with pure gasoline, 85 %vol, 50 %vol and 25vol % ethanol blended with gasoline (E85, E50, E25) to investigate the combustion and exhaust emission characteristics. Ethanol was identified to have the potential of generating a more appropriate spray for internal combustion due to a higher vapor pressure at high temperature conditions. The planar laser-induced fluorescence image demonstrated that ethanol spray has a faster diffusion velocity and an enhanced local homogeneity.
2010-10-25
Technical Paper
2010-01-2153
Mayank Mittal, David L.S. Hung, Guoming Zhu, Harold Schock
An experimental study is performed to investigate the fuel impingement on cylinder walls and piston top inside a direct-injection spark-ignition engine with optical access to the cylinder. Three different fuels, namely, E85, E50 and gasoline are used in this work. E85 represents a blend of 85 percent ethanol and 15 percent gasoline by volume. Experiments are performed at different load conditions with the engine speeds of 1500 and 2000 rpm. Two types of fuel injectors are used; (i) High-pressure production injector with fuel pressures of 5 and 10 MPa, and (ii) Low-pressure production-intent injector with fuel pressure of 3 MPa. In addition, the effects of split injection are also presented and compared with the similar cases of single injection by maintaining the same amount of fuel for the stoichiometric condition. Novel image processing algorithms are developed to analyze the fuel impingement quantitatively on cylinder walls and piston top inside the engine cylinder.
2010-10-25
Technical Paper
2010-01-2149
Zhao Zhenfeng, Ying Huang, Fujun Zhang, Changlu Zhao, Kai Han
In this paper the experiments of hydraulic free piston diesel engine is described. The experimental data were obtained from measurement instruments on the free piston diesel engine that has been developed by Beijing Institute of Technology [ 1 ]. This article discusses the influences of compression pressure, injection timing, and combustion process to the free piston diesel engine principle. The compression process experiment shows that the piston velocity, the compression ratio can be controlled by adjusting the compression pressure. With the increasing of the compression pressure, there is a growing a compression ratio and piston velocity. The study on injection timing shows that the injection timing impacts the cylinder pressure peak value and the pressure peak arrival time. The combustion process is quite different from the crankshaft engine because of the unique piston movement characteristics of the hydraulic free piston engine.
2010-10-25
Technical Paper
2010-01-2146
Massimo Rundo
Scope of this work is the analysis of the energy consumed by lubricating gear pumps for automotive applications during a driving cycle. This paper presents the lumped parameter simulation model of gerotor lubricating pumps and the comparison between numerical outcomes and experimental results. The model evaluates the power required to drive the pump and the cumulative energy consumed in the driving cycle. The influence of temperature variations on leakage flows, viscous friction torque and lubricating circuit permeability is taken into account. The simulation model has been validated by means of a test rig for hydraulic pumps able to reproduce the typical speed, temperature and load profiles during a NEDC driving cycle. Experimental tests, performed on a crankshaft mounted pump for diesel engines, have confirmed a good matching with the simulation model predictions in terms of instantaneous quantities and overall energy consumption.
2010-10-25
Technical Paper
2010-01-2143
Prasad Shingne, Dennis N. Assanis, Aristotelis Babajimopoulos, Philip Keller, David Roth, Michael Becker
Naturally aspirated HCCI operation is typically limited to medium load operation (∼ 5 bar net IMEP) by excessive pressure rise rate. Boosting can provide the means to extend the HCCI range to higher loads. Recently, it has been shown that HCCI can achieve loads of up to 16.3 bar of gross IMEP by boosting the intake pressure to more than 3 bar, using externally driven compressors. However, investigating HCCI performance over the entire speed-load range with real turbocharger systems still remains an open topic for research. A 1 - D simulation of a 4 - cylinder 2.0 liter engine model operated in HCCI mode was used to match it with off-the-shelf turbocharger systems. The engine and turbocharger system was simulated to identify maximum load limits over a range of engine speeds. Low exhaust enthalpy due to the low temperatures that are characteristic of HCCI combustion caused increased back-pressure and high pumping losses and demanded the use of a small and more efficient turbocharger.
2010-10-25
Journal Article
2010-01-2142
Rick Dehner, Ahmet Selamet, Philip Keller, Michael Becker
The behavior of the compression system in turbochargers is studied with a one-dimensional engine simulation code. The system consists of an upstream compressor duct open to ambient, a centrifugal compressor, a downstream compressor duct, a plenum, and a throttle valve exhausting to ambient. The compression system is designed such that surge is the low mass flow rate instability mode, as opposed to stall. The compressor performance is represented through an extrapolated steady-state map. Instead of incorporating a turbine into the model, a drive torque is applied to the turbocharger shaft for simplification. Unsteady compression system mild surge physics is then examined computationally by reducing the throttle valve diameter from a stable operating point. Such an increasing resistance decreases the mass flow rate through the compression system and promotes surge.
2010-10-25
Journal Article
2010-01-2245
Michele Battistoni, Carlo Nazareno Grimaldi
The aim of the paper is the comparison of the injection process with different fuels, i.e. a standard diesel fuel and a pure biodiesel. Multiphase cavitating flows inside diesel nozzles are analyzed by means of unsteady CFD simulations using a two-fluid approach with consideration of bubble dynamics, on moving grids from needle opening to closure. Two five-hole nozzles with cylindrical and conical holes are studied and their behaviors are discussed taking into account the different properties of the two fuels. Extent of cavitation regions is not much affected by the fuel type. Biodiesel leads to significantly higher mass flow only if the nozzle design induces significant cavitation which extends up to the outlet section and if the injector needle is at high lift. If the internal hole shaping is able to suppress cavitation, the stabilized mass flows are very similar with both fuels.
2010-10-25
Technical Paper
2010-01-2244
Lucio Postrioti, Michele Battistoni
In the present paper, a detailed numerical and experimental analysis of a spray momentum flux measurement device capability is presented. Particular attention is devoted to transient, engine-like injection events in terms of spray momentum flux measurement. The measurement of spray momentum flux in steady flow conditions, coupled with knowledge of the injection rate, is steadily used to estimate the flow mean velocity at the nozzle exit and the extent of flow cavitation inside the nozzle in terms of a velocity reduction coefficient and a flow section reduction coefficient. In the present study, the problem of analyzing spray evolution in short injection events by means of jet momentum flux measurement was approached. The present research was based on CFD-3D analysis of the spray-target interaction in a momentum measurement device.
2010-10-25
Technical Paper
2010-01-2240
Maria Cárdenas, Diana Martin, Reinhold Kneer
An experimental study on the interaction of sprays from clustered orifices is presented. Droplet size and velocity information has been gained by means of Phase Doppler Anemometry for different nozzle configurations varying the diverging opening angle between clustered sprays from 0° to 15°. These nozzles were investigated under high-pressure (50 bar) and high-temperature (800 K) conditions in a pressure chamber and the results are compared to two standard nozzles with flow rates corresponding either to the flow rate of the cluster nozzle configuration or half of the flow rate of this configuration. Two injection pressures, 600 bar and 1100 bar, were used to investigate all nozzles. This investigation completes the characterization of sprays from the cluster nozzles presented in an earlier work. Findings obtained therein were used to choose the measurement procedure for the present investigation and also to determine the spray width in order to obtain the spray angle.
Viewing 1 to 30 of 14432

Filter

  • Range:
    to:
  • Year: