Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Consistent Development Methodology for hybrid AWD powertrains

2008-01-09
2008-28-0003
Highest grow or highest attention in vehicles power-train is related to AWD and hybrid concepts. Some of the targets for these technologies are conflicting, others are very similar, and sometimes it depends on the application. In a first look it is very questionable weather these technologies should be combined. But it can be shown, that the combination makes quite some sense. It is possible to get the superior performance and enhance safety combined with reasonable fuel economy by hybridizing an AWD powertrain. From simulation to testing, efficient processes and a consistent development platform is key to fulfill all the development tasks in the environment of this increased complexity. Simulation and benchmark activities are valuable in the early project phases to define the targets and create the specifications. In the virtual world the system selection is a major task. To get appropriate results software modules are incorporated in the simulation environment.
Technical Paper

Systematic Development of Hybrid Systems for Commercial Vehicles

2011-10-06
2011-28-0064
The reduction of CO₂ emissions represents a major goal of governments worldwide. In developed countries, approximately 20% of the CO₂ emissions originate from transport, one third of this from commercial vehicles. CO₂ emission legislation is in place for passenger cars in a number of major markets. For commercial vehicles such legislation was also already partly published or is under discussion. Furthermore the commercial vehicles market is very cost sensitive. Thus the major share of fuel cost in the total cost of ownership of commercial vehicles was already in the past a major driver for the development of efficient drivetrain solutions. These aspects make the use of new powertrain technologies, specifically hybridization, mandatory for future commercial powertrains. While some technologies offer a greater potential for CO₂ reduction than others, they might not represent the overall optimum with regard to the total cost of ownership.
Technical Paper

Functional Integration as Key for Affordable Electrified Passenger Car Powertrains

2013-01-09
2013-26-0067
Further fuel efficiency improvements are mandatory in order to achieve the CO2 emission limits envisaged in the future. Electrification of the powertrain is seen as one of the key technologies to achieve these future goals. However, electrification of the power train typically goes with a massive cost increase of the overall system itself which is especially crucial for cost sensitive markets like India. AVL's approach to cost reduction for comparable performance and fuel consumption target values is an integration of functions. This paper demonstrates that, through a deeper interaction of the single powertrain components, further fuel efficiency optimization may be gained. System optimization at a powertrain level enables the achievement of future powertrain targets with respect to fuel efficiency and performance with only minimal and reduced requirements at a component level (i.e. combustion engine, electric drive, transmission and battery).
X