Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Technical Paper

Production Feasible DME Technology for Direct Injection CI Engines

2001-05-07
2001-01-2015
DiMethyl Ether (DME) has been shown to be a very attractive fuel for low emission direct injection compression ignition (DICI) engines. It combines the advantages of the high efficiencies of diesel cycle engines with soot free combustion. However, its greatest drawback is the need to develop new fuel injection and handling systems. Previous approaches have been common rail type injection systems which have shown great potential in reducing harmful exhaust emissions and achieving good engine performance and efficiency due to good control of both the fuel injection characteristics and temperature. The concept also has proven benefits with respect to convenient and safe fuel handling. The logical evolution of this concept simplifies the fuel system and avoids special components for DME handling such as high pressure rail pumps while retaining all the benefits of the common rail principle.
Technical Paper

Methodology and Tools to Predict GDI Injector Tip Wetting as Predecessor of Tip Sooting

2018-04-03
2018-01-0286
With upcoming emission regulations particle emissions for GDI engines are challenging engine and injector developers. Despite the introduction of GPFs, engine-out emission should be optimized to avoid extra cost and exhaust backpressure. Engine tests with a state of the art Miller GDI engine showed up to 200% increased particle emissions over the test duration due to injector deposit related diffusion flames. No spray altering deposits have been found inside the injector nozzle. To optimize this tip sooting behavior a tool chain is presented which involves injector multiphase simulations, a spray simulation coupled with a wallfilm model and testing. First the flow inside the injector is analyzed based on a 3D-XRay model. The next step is a Lagrangian spray simulation coupled with a wallfilm module which is used to simulate the fuel impingement on the injector tip and counter-bores.
Technical Paper

Ways to Meet Future Emission Standards with Diesel Engine Powered Sport Utility Vehicles (SUV)

2000-03-06
2000-01-0181
The paper reports on the outcome of a still on-going joint-research project with the objective of establishing a demonstrator high speed direct injection (HSDI) diesel engine in a Sport Utility Vehicle (SUV) which allows to exploit the effectiveness of new engine and aftertreatment technologies for reducing exhaust emissions to future levels of US/EPA Tier 2 and Euro 4. This objective should be accomplished in three major steps: (1) reduce NOx by advanced engine technologies (cooled EGR, flexible high pressure common rail fuel injection system, adapted combustion system), (2) reduce particulates by the Continuous Regeneration Trap (CRT), and (3) reduce NOx further by a DeNOx aftertreatment technology. The current paper presents engine and vehicle results on step (1) and (2), and gives an outlook to step (3).
Technical Paper

Potential for Emission Reduction and Fuel Economy with Micro & Mild HEV

2019-11-21
2019-28-2504
The development of modern combustion engines (spark ignition as well as compression ignition) for vehicles compliant with future oriented emission legislation (BS6, Euro VI, China 6) has introduced several technologies for improvement of both fuel efficiency as well as low emissions combustion strategies. Some of these technologies as there are high pressure multiple injection systems or sophisticated exhaust gas after treatment system imply substantial increase in test and calibration time as well as equipment cost. With the introduction of 48V systems for hybridization a cost- efficient enhancement and, partially, an even attractive alternative is now available. An overview will be given on current technologies as well as on implemented test procedures. The focus will be on solutions which have potential for the Indian market, i.e. solutions which can be implemented with moderate application effort for currently available compact and medium size cars.
X