Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 56
2013-01-09
Technical Paper
2013-26-0113
Nikolaus Keuth, Harald Altenstrasser, Arpad Kunzfeld, Eike Martini
A calibration and validation workflow will be presented in this paper, which utilizes common static global models for fuel consumption, NOx and soot. Due to the applicability for warm-up tests, e.g. New European Driving Cycle (NEDC), the models need to predict the temperature influence and will be fitted with measuring data from a conditioned engine test bed. The applied model structure consisting of a number of global data-based sub-models is configured especially for the requirements of multi-injection strategies of common rail systems. Additionally common global models for several constant coolant water temperature levels are generated and the workflow tool supports the combination and segmentation of global nominal map with temperature correction maps for seamless and direct ECU setting.
2013-01-09
Technical Paper
2013-26-0115
F. Murr, E. Winklhofer, H. Friedl
Traditional power train development work is concentrated mainly on test bed and on chassis dyno. Though we can simulate a lot of real world conditions on testbed and chassis dyno today, on road application work willis gaining more attention. This means that strategies and tools for invehicle testing under real world conditions are becoming more important. Emission, performance, fuel economy, combustion noise and driving comfort are linked to combustion quality, i.e. quality of fuel mixture preparation and flame propagation. The known testing and research equipment is only partly or not at all applicable for in-vehicle development work. New tools for on the road testing are required. Following, a general view on in-vehicle power train testing will be given. Additionally, new ways to investigate cylinder and cycle specific soot formation in GDI engines with fiber optic tools will be presented.
2014-04-01
Journal Article
2014-01-0594
Suad Jakirlic, Lukas Kutej, Branislav Basara, Cameron Tropea
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
2005-05-16
Technical Paper
2005-01-2358
Robert Fairbrother, Hans Bodén, Ragnar Glav
Both linear (frequency domain) and non-linear (time domain) prediction codes are used for the simulation of duct acoustics in exhaust systems. Each approach has its own set of advantages and disadvantages. One disadvantage of the linear method is that information about the engine as an acoustic source is needed in order to calculate the insertion loss of mufflers or the level of radiated sound. The source model used in the low frequency plane wave range is the linear time invariant 1-port model. This source characterization data is usually obtained from experimental tests where multi-load methods and especially the two-load method are most commonly used. These measurements are time consuming and expensive. However, this data can also be extracted from an existing 1-D non-linear CFD code describing the engine gas exchange process.
2005-09-11
Technical Paper
2005-24-053
P. Priesching, R. Tatschl, F. Mauss, F. Saric, K. Netzell, W. Bauer, M. Schmid, A. Leipertz, S. S. Merola, B. M. Vaglieco
The intention of the presented work was to develop a new simulation tool that fits into a CFD (computational fluid dynamics) workflow and provides information about the soot particle size distribution. Additionally it was necessary to improve and use state-of-the-art measurement techniques in order to be able to gain more knowledge about the behavior of the soot particles and to validate the achieved simulation results. The work has been done as a joint research financed by the European Community under FP5.
2005-09-11
Technical Paper
2005-24-085
David Greif, Eberhard von Berg, Reinhard Tatschl, Giovanni Corbinelli, Mario D'Onofrio
A methodology to simulate the injection process in the internal combustion (IC) engines by means of Computational Fluid Dynamics (CFD) is presented. Entire sequence of the gasoline injection processes, starting with a transient injector-flow simulation and continuing with break-up and spray propagation using AVL FIRE, is shown. In the first part, a multidimensional model for the cavitating flow in a multi-hole gasoline injector is presented, based on the two-fluid model and capable to simulate N-phase systems. Considered fluid components are liquid fuel and fuel vapor. Momentum and mass exchange between the two phases are accounted for. In the second part of the work, the link between nozzle flow and spray formation is established performing simulations including the break-up model. This calculates the initial conditions for the spray droplets, e.g., size and velocity, based on the local turbulent kinetic energy (TKE), velocity and phase distribution at the nozzle orifice.
2005-04-11
Technical Paper
2005-01-1945
P. Schoeggl, W. Kriegler, E. Bogner
The rapidly growing complexity and the growing cross linking of powertrain components leads to longer development times, especially in the vehicle calibration process. The number of systems which need to be fitted to each other and the number of parameters to be calibrated in the particular systems are increasing tremendously. The extensive use of simulation promises to reduce the calibration effort by providing pre-optimized parameter sets. This paper describes a new simulation methodology by the interlinking of advanced vehicle simulation and evaluation tools, in particular the AVL-tools CRUISE, VSM and DRIVE. This methodology allows to semi automatically pre-optimize powertrain and vehicle parameters before hardware is involved. So far the pre-calibration of vehicle and powertrain parameters by simulation was not satisfying because of the missing of a reliable evaluation tool for the produced simulation results.
2005-05-10
Technical Paper
2005-01-2000
J. K. Wolfahrt, W. B. Baier, B. Wiesler, A. Raulot, J. P. Rugh, D. Bharathan, C. Kußmann
Automobile manufacturers and suppliers are under pressure to develop more efficient thermal management systems as fuel consumption and emission regulations become stricter and buyers demand greater comfort and safety. Additionally, engines must be very efficient and windows must deice and defog quickly. These requirements are often in conflict. Moreover, package styling and cost constraints severely limit the design of coolant and air conditioning systems. Simulation-based design and virtual prototyping can ensure greater product performance and quality at reduced development time and cost. The representation of the vehicle thermal management needs a scalable approach with 0-D, 1-D, and 3-D fluid dynamics, multi-body dynamics, 3-D structural analysis, and control unit simulation capabilities. Different combinations and complexities of the simulation tools are required for various phases of the product development process.
2005-05-11
Technical Paper
2005-01-2098
Ryo Masuda, Takayuki Fuyuto, Makoto Nagaoka, Eberhard von Berg, Reinhard Tatschl
A series calculation methodology from the injector nozzle internal flow to the in-cylinder fuel spray and mixture formation in a diesel engine was developed. The present method was applied to a valve covered orifice (VCO) nozzle with the recent common rail injector system. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. Inside the nozzle hole, cavitation appears at the nozzle hole inlet edge, and the cavitation region separates into two regions due to a secondary flow in the cross section, and it is distributed to the nozzle exit. Unsteady change of the secondary flow caused by needle movement affects the cavitation distribution in the nozzle hole, and the spread angle of the velocity vector at the nozzle exit.
2005-04-11
Technical Paper
2005-01-1883
J. K. Wolfahrt, W. B. Baier, B. Wiesler, Th. Moshammer
The de-icing process of the windscreen is a demanding problem in car climatization. In the first stages of the development procedure of air ducts, the numerical simulation plays an important role due to economy of time and money. Unfortunately, the available numerical methods for the generation of the computational grid and the simulation of the de-icing process are very time consuming and are complicated in handling. Therefore normally the quality of the de-icing process is evaluated with simplified simulation procedures or even with measurements late in the design process and necessary modifications are again time and cost consuming. The aim of this paper is to describe new methods for the de-icing simulation that will reduce meshing and calculation time by showing accurate results.
2015-04-14
Journal Article
2015-01-0183
Georg Macher, Muesluem Atas, Eric Armengaud, Christian Kreiner
Abstract Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
2014-11-11
Technical Paper
2014-32-0020
Patrick Falk, Christian Hubmann
Abstract Originally developed for the automotive market, a fully automatic real-time measurement tool AVL-DRIVE is commercially available for analyzing and scoring vehicle drive quality, also known as “Driveability”. This system from AVL uses its own transducers, calibrated to the sensitivity and response of the human body to measure the forces felt by the driver, such as acceleration, shock, surging, vibration, noise, etc. Simultaneously, the vehicle operating conditions are measured, (throttle grip angle, engine speed, gear, vehicle speed, temperature, etc.). Because the software is pre-programmed with the scores from a multitude of different vehicles in each vehicle class via neural networks and fuzzy logic formula, a quality score with reference to similar competitor vehicles is instantly given. This tool is already successfully implemented in the market for years to investigate such driveability parameters for passenger cars.
2010-04-12
Technical Paper
2010-01-0494
Carl Osterwisch, Michael DeJack, Matej Smolnikar
Design of cylinder heads involves complex constraints that must satisfy thermal, strength, performance, and manufacturing requirements which present a great challenge for successful development. During development of a new highly loaded cylinder head, CAE methods predicted unacceptable fatigue safety factors for the initial prototype design. Hydropulsator component testing was undertaken and the results were correlated with the analysis predictions using a statistical method to calculate failure probability. Shape optimization was undertaken to improve high cycle fatigue safety in vulnerable regions of the cylinder head water jacket for the subsequent design release. The optimization process provided more efficient design guidance than previously discovered through a traditional iterative approach. Follow-on investigations examined other shape optimization software for fatigue improvement in the cylinder head.
2010-04-12
Journal Article
2010-01-0585
Paul Whitaker, Yuan Shen, Christian Spanner, Heribert Fuchs, Apoorv Agarwal, Kevin Byrd
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
2013-09-08
Technical Paper
2013-24-0007
S. Möller, G.K. Dutzler, P. Priesching, J.V. Pastor, C. Micó
Accurate simulation tools are needed for rapid and cost effective engine development in order to meet ever tighter pollutant regulations for future internal combustion engines. The formation of pollutants such as soot and NOx in Diesel engines is strongly influenced by local concentration of the reactants and local temperature in the combustion chamber. Therefore it is of great importance to model accurately the physics of the injection process, combustion and emission formation. It is common practice to approximate Diesel fuel as a single compound fuel for the simulation of the injection and combustion process. This is in many cases sufficient to predict the evolution of the in-cylinder pressure and heat release in the combustion chamber. The prediction of soot and NOx formation depends however on locally component resolved quantities related to the fuel liquid and gas phase as well as local temperature.
2013-04-08
Technical Paper
2013-01-1084
Reinhard Tatschl, Michael Bogensperger, Zoran Pavlovic, Peter Priesching, Henrik Schuemie, Oldrich Vitek, Jan Macek
A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model.
2010-09-28
Technical Paper
2010-32-0130
Martin Atzwanger, Christian Hubmann, Wolfgang Schoeffmann, Bernhard Kometter, Hubert Friedl
The demand for improved fuel economy and the request for Zero Emission within cities require complex powertrains with an increasing level of electrification already in a short-termed timeframe until 2025. According to general expectations the demand for Mild-Hybrid powertrains will increase significantly within a broad range of implementation through all vehicle classes as well as on electric vehicles with integrated Range Extender (RE) mainly for use in urban areas. Whereas Mild Hybrid Vehicles basically use downsized combustion engines at current technology level, vehicles with a high level of powertrain electrification allow significantly different internal combustion engine (ICE) concepts. At AVL, various engine concepts have been investigated and evaluated with respect to the key criteria for a Range Extender application. A Wankel rotary engine concept as well as an inline 2 cylinder gasoline engine turned out to be most promising.
2009-05-19
Journal Article
2009-01-2211
Achim Hepberger, Hans-Herwig Priebsch, Franz Diwoky, Harald Pramberger
As an alternative to the element based methods, recently a wave based technique (WBT) has been developed. Since it is based on the indirect Trefftz approach, exact solutions of the governing differential equation are used to approximate the dynamic field variables. This paper discusses the extensions of the WBT for the analysis of engine noise radiation problems in 3 dimensions under anechoic conditions. Furthermore, necessary extensions of shape functions, numerical integration and a methodology to create a WBT radiation models are described. The performance of the method compared to a commercial BEM solution is demonstrated with a real engine example.
1997-05-20
Technical Paper
971992
B. Loibnegger, G. Ph. Rainer, L. Bernard, D. Micelli, G. Turino
The development of low noise engines and vehicles, accompanied by the reduction of costs and development time, can be obtained only if the design engineer is supported by complex calculation tools in a concurrent engineering process. In this respect, the reduction of vibrations (passenger comfort) and of vehicle noise (accelerated pass by noise) are important targets to meet legislative limits. AVL has been developing simulation programs for the dynamic-acoustic optimization of engines and gear trains for many years. To simulate the structure-born and air-born noise behavior of engines under operating conditions, substantial efforts on the mathematical simulation model are necessary. The simulation tool EXCITE, described in this paper, allows the calculation of the dynamic-acoustic behavior of power units.
1997-05-20
Technical Paper
971965
W. Hellinger, H. Ch. Raffel, G. Ph. Rainer
This report shows the methods, which AVL uses for the calculation of gear box noise. The analysis of the gear box structure (housing) is done using finite element method (FEM), thereby the natural frequencies are calculated as well as forced vibrations. As input for the FE calculation of the forced vibrations, the dynamic bearing forces of the shafts in the gear box or the dynamic tooth mesh are used. These forces are determined using the MBS (multi body system) software GTDYN, considering the torsional vibrations as well as axial and bending vibrations. Several examples of calculation results for the investigation of the gear dynamics are shown within the scope of this report.
1998-02-23
Technical Paper
980492
M. Wirth, W. F. Piock, G. K. Fraidl, P. Schoeggl, E. Winklhofer
Gasoline direct injection is one of the main issues of actual worldwide SI engine development activities. It requires a comprehensive system approach from the basic considerations on optimum combustion system configuration up to vehicle performance and driveability. The general characteristics of currently favored combustion system configurations are discussed in this paper regarding both engine operation and design aspects. The engine performance, especially power output and emission potential of AVL's DGI engine concept is presented including the interaction of advanced tools like optical diagnostics and 3D-CFD simulation in the combustion system development process. The application of methods like tomographic combustion analysis for investigations in the multicylinder engine within further stages of development is demonstrated. The system layout and operational strategies for fuel economy in conjunction with exhaust gas aftertreatment requirements are discussed.
2007-04-16
Technical Paper
2007-01-0104
B. Basara, F. Aldudak, S. Jakirlić, C. Tropea, M. Schrefl, J. Mayer, K. Hanjalić
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
2005-04-11
Technical Paper
2005-01-0796
F. Zieher*, F. Langmayr, A. Jelatancev, K. Wieser
The requirement for increased power and reduced emission and fuel consumption levels for diesel engines has created very stringent demands on the cylinder head design. In current engine development programs it is often observed that the limiting design factor is given by the thermal mechanical fatigue strength of the cylinder head. Design iterations resulting from durability testing are often necessary due to the lack of adequate simulation techniques for prediction thermal mechanical fatigue (TMF) failure. A complete lifetime simulation process is presented in this paper with emphasis on a newly developed material model for describing the constitutive behavior of cast iron (i.e. gray cast iron and compacted graphite iron) under thermal cycling. The material model formulation is based on a continuum-damage-mechanics (CDM) approach in order to account for the tension / compression anomaly of cast iron.
2004-11-16
Technical Paper
2004-01-3406
K. G. Mahmoud, E. Loibner, J. Krammer
The need to improve the engine performance and fuel consumption subject to ever more stringent emission standard spar the interest in the aspects of understanding and quantifying the thermal behavior of engine components and systems. Considering these points during the design of the vehicle thermal management system based on test would consume far too many resources. Fortunately, the simulation tools have become more prominent in the pre-prototype phase of the vehicle development process and they had reached a mature stage; where they can contribute successfully to a significant extend to meet the vehicle development targets. In this work, a methodology to model the Vehicle Thermal Management System (VTMS) in order to understand and quantify its behavior has been developed. The partial systems under consideration are: the gas circuit, the cooling circuit, the lubrication circuit and the thermal capacitance of the engine structure under the vehicle driving conditions.
2004-03-08
Technical Paper
2004-01-0694
A. G. Konstandopoulos, D. Zarvalis, E. Papaioannou, N. D. Vlachos, G. Boretto, M. F. Pidria, P. Faraldi, O. Piacenza, P. Prenninger, T. Cartus, H. Schreier, W. Brandstätter, C. Wassermayr, G. Lepperhof, V. Scholz, B. Luers, J. Schnitzler, M. Claussen, A. Wollmann, M. Maly, G. Tsotridis, B. M. Vaglieco, S. S. Merola, D. Webster, D. Bergeal, C. Görsmann, H. Obernosterer, D. Fino, N. Russo, G. Saracco, V. Specchia, N. Moral, A. D'Anna, A. D'Alessio, R. Zahoransky, E. Laile, S. Schmidt, M. Ranalli
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
2004-03-08
Technical Paper
2004-01-0968
Wolfgang Schindler, Christoph Haisch, Harald A. Beck, Reinhard Niessner, Eberhard Jacob, Dieter Rothe
ABCTRACT The reduction of particulate emissions limits requires new tools for the tuning of engines and exhaust aftertreatment systems. Time-resolved monitoring of low soot emissions is a key feature for such developments. The paper describes an improved photoacoustic soot sensor, and presents its applications for the characterization of transient exhaust soot emissions before and after Diesel emission after-treatment systems. The detection limit of the unit is around 5 μg/m3 soot, which is two orders of magnitude better than conventional time-resolved transmission measurement. Additionally, a wide dynamic range of four orders of magnitude can be achieved without range switching. The photoacoustic signal is proportional to the soot mass, no significant cross-sensitivities to gaseous absorbers were detected.
2008-04-14
Technical Paper
2008-01-1322
Patrick Siebenbrunner, Ralf Fischperer, Johann Bachler, Gianluca Vitale, Holger Hülser
Worldwide OBD legislation has and will be tightened drastically. In the US, OBD II for PC and the introduction of HD OBD for HD vehicles in 2010 will be the next steps. Further challenges have come up with the introduction of active exhaust gas aftertreatment components to meet the lower future emission standards, especially with the implementation of combined DPF-De-NOx-systems for PC and HD engines. Following such an increase in complexity, more comprehensive algorithms and software have to be developed to cope with the legislative requirements for exhaust gas aftertreatment devices. The calibration has to assure the proper functionality of OBD under all driving situations and ambient conditions. The increased complexity can only be mastered when new and efficient tools and methodologies are applied for both algorithm design and calibration. Consequently, OBD requirements have to be taken into account right from the start of engine development.
2008-04-14
Technical Paper
2008-01-0865
Johann C. Wurzenberger, Roland Wanker, Martin Schüßler
The introduction of more stringent standards for engine emissions requires continuous improvement of exhaust gas aftertreatment systems. Modern systems require a combined design and application of different aftertreatment devices. Computer simulation helps to investigate the complexity of different system layouts. This study presents an overall aftertreatment modeling framework comprising dedicated models for pipes, oxidation catalysts, wall flow particulate filters and selective catalytic converters. The model equations of all components are discussed. The individual behavior of all components is compared to experimental data. With these well calibrated models a simulation study on a DOC-DPF-SCR exhaust system is performed. The impact of pipe wall insulation on the overall NOx conversion performance is investigated during four different engine operating conditions taken from a heavy-duty drive cycle.
2008-04-14
Technical Paper
2008-01-1028
Heribert Kammerstetter, Manfred Werner, Reinhard Doell, Gertjan Kanters
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
2007-10-30
Technical Paper
2007-01-4222
Gianluca Vitale, Patrick Siebenbrunner, Holger Hülser, Johann Bachler, Ulrich Pfahl
The OBD II and EOBD legislation have significantly increased the number of system components that have to be monitored in order to avoid emissions degradation. Consequently, the algorithm design and the related calibration effort is becoming more and more challenging. Because of decreasing OBD thresholds, the monitoring strategy accuracy, which is tightly related with the components tolerances and the calibration quality, has to be improved. A model-based offline simulation of the monitoring strategies allows consideration of component and sensor tolerances as well as a first calibration optimization in the early development phase. AVL applied and improved a methodology that takes into account this information, which would require a big effort using testbed or vehicle measurements. In many cases a component influence analysis is possible before hardware is available for testbed measurements.
Viewing 1 to 30 of 56

Filter

  • Range:
    to:
  • Year: