Refine Your Search

Topic

Search Results

Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

2015-04-14
2015-01-0183
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Technical Paper

OBD Algorithms: Model-based Development and Calibration

2007-10-30
2007-01-4222
The OBD II and EOBD legislation have significantly increased the number of system components that have to be monitored in order to avoid emissions degradation. Consequently, the algorithm design and the related calibration effort is becoming more and more challenging. Because of decreasing OBD thresholds, the monitoring strategy accuracy, which is tightly related with the components tolerances and the calibration quality, has to be improved. A model-based offline simulation of the monitoring strategies allows consideration of component and sensor tolerances as well as a first calibration optimization in the early development phase. AVL applied and improved a methodology that takes into account this information, which would require a big effort using testbed or vehicle measurements. In many cases a component influence analysis is possible before hardware is available for testbed measurements.
Technical Paper

Objective Evaluation of Vehicle Driveability

1998-02-23
980204
Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Gasoline DI Engines: The Complete System Approach By Interaction of Advanced Development Tools

1998-02-23
980492
Gasoline direct injection is one of the main issues of actual worldwide SI engine development activities. It requires a comprehensive system approach from the basic considerations on optimum combustion system configuration up to vehicle performance and driveability. The general characteristics of currently favored combustion system configurations are discussed in this paper regarding both engine operation and design aspects. The engine performance, especially power output and emission potential of AVL's DGI engine concept is presented including the interaction of advanced tools like optical diagnostics and 3D-CFD simulation in the combustion system development process. The application of methods like tomographic combustion analysis for investigations in the multicylinder engine within further stages of development is demonstrated. The system layout and operational strategies for fuel economy in conjunction with exhaust gas aftertreatment requirements are discussed.
Technical Paper

Get Connected - Advanced Combustion Analysis with AVL's Sensor Data Management

2004-03-08
2004-01-1242
Today combustion analysis has to be used in every step of the engine development process and is no longer a tool for some specialists but most test bed operators have to deal with combustion analysis (also called Indicating). AVL reacts on the widened area of application and the broad spread of the Indicating measurement technology by introduction of user friendly user interfaces, which make the work during preparation of measurements as well as during measurements itself easier.
Technical Paper

Design impacts on CVS systems meeting future requirements for equivalent zero emissions vehicles

2000-06-12
2000-05-0347
The latest legislation requires a dramatic reduction of motor vehicle exhaust emission. This is also a big challenge for emission measurement instrumentation, because of almost zero concentrations of certain components in the exhaust. For current measurement devices, which are recommended by the legislation, it is almost impossible to determine such low emission levels with adequate accuracy. The paper describes a new Constant Volume Sampling (CVS) system with reduced dilution, warming and quick flow rate changing capability. Possible solutions are discussed and the properties of data measured with test facilities which are prepared to cover S-ULEV and EURO IV applications are described. Also the selection of used materials is of rising importance. The tests were performed on a dynamic engine test bed which was equipped with such a CVS system and with emission analyzing systems for raw exhaust and diluted measurements.
Technical Paper

An integrated 1D/3D workflow for analysis and optimization of injection parameters of a diesel engine

2001-09-23
2001-24-0004
The present contribution gives an overview of the use of different simulation tools for the optimization of injection parameters of a diesel engine. With a one-dimensional tool, the behavior of the mechanics and fluid dynamics of the entire injection system is calculated. This simulation provides information on the dynamic needle lift, injection rates, pressures, etc. The flow within the injector is simulated using a three-dimensional CFD tool. By use of a two-phase model, it is possible to analyze the cavitating flow inside the injector and to calculate the effective nozzle hole area as well as the exit flow characteristics. Mixture formation, combustion and pollutant formation simulation is performed adopting three-dimensional CFD. In order to provide the initial and boundary conditions for the engine CFD simulation and to optimize the engine cycle performance a one-dimensional tool is adopted.
Technical Paper

Catalytic Converters in a 1d Cycle Simulation Code Considering 3d Behavior

2003-03-03
2003-01-1002
The objective of this study to introduce the newly developed Discrete Channel Method (DCM) as a fast and efficient method for the prediction of the 3d and transient behavior of honeycomb-type catalytic converters in automotive applications. The approach is based on the assumption that the regions between the channels are treated as a reactor with a homogeneously distributed heat source due to chemical conversion. Therefore, each radial direction can be described by a center, a boundary and only a few intermediate channels between them. The discrete channels are described by transient, 1d conservation equations that characterize the behavior of channels at different radial positions. The heat entering and leaving each discrete channel is evaluated by the gradients of the temperature field in conjunction with the heat conductivity of the substrate. The approach is validated by experimental data and serves as a module in the thermodynamic and engine analysis design tool BOOST.
Technical Paper

Powertrain Solutions for Electrified Trucks and Buses

2017-05-10
2017-01-1937
Local air pollution, noise emissions as well as global CO2 reduction and public pressure drive the need for zero emission transport solutions in urban areas. OEMs are currently developing battery electric vehicles with the focus to provide emission free urban transportation combined with lowest total cost of ownership and consequently a positive business case for the end customers. Thereby the main challenges are electric range, product cost, system weight, vehicle packaging and durability. Hence they are the main drivers in current developments. In this paper AVL describes two of its truck and bus solutions - a modular battery concept as well as a concept for an integrated electric axle. Based on the vehicle requirements concept designs for both systems are presented.
Technical Paper

Systematic Development of Hybrid Systems for Commercial Vehicles

2011-10-06
2011-28-0064
The reduction of CO₂ emissions represents a major goal of governments worldwide. In developed countries, approximately 20% of the CO₂ emissions originate from transport, one third of this from commercial vehicles. CO₂ emission legislation is in place for passenger cars in a number of major markets. For commercial vehicles such legislation was also already partly published or is under discussion. Furthermore the commercial vehicles market is very cost sensitive. Thus the major share of fuel cost in the total cost of ownership of commercial vehicles was already in the past a major driver for the development of efficient drivetrain solutions. These aspects make the use of new powertrain technologies, specifically hybridization, mandatory for future commercial powertrains. While some technologies offer a greater potential for CO₂ reduction than others, they might not represent the overall optimum with regard to the total cost of ownership.
Technical Paper

A Novel Ultrasonic Intake Air Flow Meter for Test Bed Applications

2013-01-09
2013-26-0118
The development process of a combustion engine is now a days strongly influenced by future emission regulations which require further reduction in fuel consumption and precise control of combustion process based on Intake air measurement, during engine development. Intake air flow meters clearly differentiate themselves from typical industrial gas flow meters because of their ability to measure extremely dynamic phenomenon of combustion engine. Thus, high internal data acquisition rate, short response time, ability to measure pulsating and reverse flows with lower measurement uncertainty are the factors that ensures the reliability of the results without being affected by ambient influences, sensor contamination or sensor aging. The AVL developed FLOWSONIX™ is based on ultrasonic transit time measuring principle with broad-band Capacitive Ultrasonic Transducer (CUT) characterized by an excellent air impedance matching strongly distinguishes itself by fulfilling all those requirements.
Technical Paper

Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets

2013-10-07
2013-36-0438
For achieving the forthcoming CO2 emission targets of 95g/km by 2020 and for the years beyond, comprehensive activities for powertrain technology as well as development methodology has to be utilized. It will by far not be enough to add a few single technology features to achieve the desired result. More and more the success will result from comprehensive combining of synergetic utilization of complementary effects. This will be the powertrain perfectly matched to the vehicle, including the energy source, and all together integrated by means of advanced development tools and methodology.
Technical Paper

Thermal Propagation of Li-Ion Batteries: A Simulation Methodology for Enhanced and Accelerated Virtual Development

2022-10-05
2022-28-0101
The safety of BEVs in driving, charging and parking condition is essential for the success of electrification in automotive industry as well as key driver of any future development of Li-Ion HV battery. AVL has developed a unique simulation approach in which the multi-physical behavior of the single cell in thermal runaway is modelled and applied to module, pack or vehicle level. In addition and beside this cell behavior, various more physical phenomena during thermal propagation on pack level are considered and predicted by the simulation method: component melting, ignition and flammibilty of venting gas and HV failures.
Technical Paper

Integrated 1-D Tools for Modeling Vehicle Thermal Management System

2004-11-16
2004-01-3406
The need to improve the engine performance and fuel consumption subject to ever more stringent emission standard spar the interest in the aspects of understanding and quantifying the thermal behavior of engine components and systems. Considering these points during the design of the vehicle thermal management system based on test would consume far too many resources. Fortunately, the simulation tools have become more prominent in the pre-prototype phase of the vehicle development process and they had reached a mature stage; where they can contribute successfully to a significant extend to meet the vehicle development targets. In this work, a methodology to model the Vehicle Thermal Management System (VTMS) in order to understand and quantify its behavior has been developed. The partial systems under consideration are: the gas circuit, the cooling circuit, the lubrication circuit and the thermal capacitance of the engine structure under the vehicle driving conditions.
Technical Paper

Reduction of Testing Time of PTCE/HTOE Tests Based on Real Road Load Profiles

2022-03-29
2022-01-0176
HTOE (High Temperature Operation Endurance) and PTCE (Power Thermal Cycle Endurance) tests are typically performed according automotive group standards, such as LV 124 [1], VW80000 [2], FCA CS.00056 [3] or PSA B21 7130 [4]. The LV 124-2 group standard, composed by representatives of automobile manufacturers like Audi AG, BMW AG, Volkswagen AG and Porsche AG describes a wide range of environmental tests and their requirements. In addition, calculation parameters and a method are given in the standard. These group standard tests are often attributed to IEC 60068-2-2 [5] for HTOE and IEC 60068-2-14 [6] for PTCE. As both of these tests are typically of long duration, fundamentally linked to reliability (therefore requiring a statistically significant number of samples) and of considerable importance to power electronic, they are worthy of additional scrutiny for automotive developers as most automotive development moves towards electrification.
Technical Paper

Evaluation of a New Design for CVS-Systems Meeting the Requirements of S-ULEV and EURO IV

2000-03-06
2000-01-0800
The latest legislation requires the automotive industry to once again reduce the emission levels of their latest vehicles. This leads to a new challenge in the field of emission measurement, because the concentrations of certain components of the exhaust gases are extremely low. For current measurement devices, which are recommended by the legislation, it is almost impossible to determine such low emission levels with the necessary accuracy. This study evaluates the features of an improved CVS system (Constant Volume Sampling) with the possibility of heating and the ability of changing flow rates quickly. Possible solutions are discussed and the properties of data measured with test facilities which are prepared to cover S-ULEV and EURO IV applications are described. The tests were performed on a dynamic engine test bed which was equipped with such a CVS system and with emission analyzing systems for raw exhaust and diluted measurements.
Technical Paper

Integrated Toolchain for Powertrain Optimization for Indian Commercial Vehicles

2015-01-14
2015-26-0032
Best fuel efficiency is one of the core requirements for commercial vehicles in India. Consequently it is a central challenge for commercial vehicle OEMs to optimize the entire powertrain, hence match engine, transmission and rear axle specifications best to the defined application. The very specific real world driving conditions in India (e.g. traffic situations, road conditions, driver behavior, etc.) and the large number of possible commercial powertrain combinations request an efficient and effective development methodology. This paper presents a methodology and tool chain to specify and develop commercial powertrains in a most efficient and effective way. The methodology is based on the measurement of real world driving scenarios, identification of representative Real World Driving Profiles and vehicle system simulation which allows extended analysis of the road topography, the traffic situation as well as the driver behavior.
X