Refine Your Search

Topic

Author

Search Results

Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Technical Paper

OBD Algorithms: Model-based Development and Calibration

2007-10-30
2007-01-4222
The OBD II and EOBD legislation have significantly increased the number of system components that have to be monitored in order to avoid emissions degradation. Consequently, the algorithm design and the related calibration effort is becoming more and more challenging. Because of decreasing OBD thresholds, the monitoring strategy accuracy, which is tightly related with the components tolerances and the calibration quality, has to be improved. A model-based offline simulation of the monitoring strategies allows consideration of component and sensor tolerances as well as a first calibration optimization in the early development phase. AVL applied and improved a methodology that takes into account this information, which would require a big effort using testbed or vehicle measurements. In many cases a component influence analysis is possible before hardware is available for testbed measurements.
Technical Paper

Objective Evaluation of Vehicle Driveability

1998-02-23
980204
Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Two-Cylinder Gasoline Engine Concept for Highly Integrated Range Extender and Hybrid Powertrain Applications

2010-09-28
2010-32-0130
The demand for improved fuel economy and the request for Zero Emission within cities require complex powertrains with an increasing level of electrification already in a short-termed timeframe until 2025. According to general expectations the demand for Mild-Hybrid powertrains will increase significantly within a broad range of implementation through all vehicle classes as well as on electric vehicles with integrated Range Extender (RE) mainly for use in urban areas. Whereas Mild Hybrid Vehicles basically use downsized combustion engines at current technology level, vehicles with a high level of powertrain electrification allow significantly different internal combustion engine (ICE) concepts. At AVL, various engine concepts have been investigated and evaluated with respect to the key criteria for a Range Extender application. A Wankel rotary engine concept as well as an inline 2 cylinder gasoline engine turned out to be most promising.
Technical Paper

Get Connected - Advanced Combustion Analysis with AVL's Sensor Data Management

2004-03-08
2004-01-1242
Today combustion analysis has to be used in every step of the engine development process and is no longer a tool for some specialists but most test bed operators have to deal with combustion analysis (also called Indicating). AVL reacts on the widened area of application and the broad spread of the Indicating measurement technology by introduction of user friendly user interfaces, which make the work during preparation of measurements as well as during measurements itself easier.
Technical Paper

Design impacts on CVS systems meeting future requirements for equivalent zero emissions vehicles

2000-06-12
2000-05-0347
The latest legislation requires a dramatic reduction of motor vehicle exhaust emission. This is also a big challenge for emission measurement instrumentation, because of almost zero concentrations of certain components in the exhaust. For current measurement devices, which are recommended by the legislation, it is almost impossible to determine such low emission levels with adequate accuracy. The paper describes a new Constant Volume Sampling (CVS) system with reduced dilution, warming and quick flow rate changing capability. Possible solutions are discussed and the properties of data measured with test facilities which are prepared to cover S-ULEV and EURO IV applications are described. Also the selection of used materials is of rising importance. The tests were performed on a dynamic engine test bed which was equipped with such a CVS system and with emission analyzing systems for raw exhaust and diluted measurements.
Technical Paper

Comparison of CO2 Emission Levels for Internal Combustion Engine and Fuel Cell Automotive Propulsion Systems

2001-11-12
2001-01-3751
The well-to-wheel CO2 emissions and energy use of internal combustion engines (diesel and gasoline) are compared to fuel cell automotive propulsion systems. The fuel cell technologies investigated are polymer electrolyte fuel cell (PEFC), alkaline fuel cell (AFC) and solid oxide fuel cell (SOFC). The fuels are assumed to be produced from either crude oil or natural gas. The comparison is based on driving cycle simulations of a mid-class passenger car with an inertia test weight of 1350 kg. The study shows that the optimized diesel drive train (downsized mated to an integrated starter generator) achieves the best overall energy efficiency. The lowest CO2 emissions are produced by compressed natural gas (CNG) vehicles. Fuel cell propulsion systems achieve similar or even better CO2 emission values under hot start conditions but suffer from high energy input required during warm-up.
Technical Paper

Testing of a Long Haul Demonstrator Vehicle with a Waste Heat Recovery System on Public Road

2016-09-27
2016-01-8057
This paper presents the results of a long haul truck Waste Heat Recovery (WHR) system from simulation, test bench and public road testing. The WHR system uses exhaust gas recuperation only and utilizes up to 110kW of exhaust waste heat for the Organic Rankine Cycle (ORC) in a typical European driving cycle. The testing and simulation procedures are explained in detail together with the tested and simulated WHR fuel consumption benefit for different real life cycles in Europe and USA reaching fuel consumption benefits between 2.5% and 3.4%. Additionally a technology road map is shown which discusses the role of WHR in fulfilling the future CARB BSFC target value (minimum in map) of around 172 g/kWh.
Technical Paper

Powertrain Solutions for Electrified Trucks and Buses

2017-05-10
2017-01-1937
Local air pollution, noise emissions as well as global CO2 reduction and public pressure drive the need for zero emission transport solutions in urban areas. OEMs are currently developing battery electric vehicles with the focus to provide emission free urban transportation combined with lowest total cost of ownership and consequently a positive business case for the end customers. Thereby the main challenges are electric range, product cost, system weight, vehicle packaging and durability. Hence they are the main drivers in current developments. In this paper AVL describes two of its truck and bus solutions - a modular battery concept as well as a concept for an integrated electric axle. Based on the vehicle requirements concept designs for both systems are presented.
Technical Paper

Impact of GHG-Phase II and Ultra Low NOx on the Base Powertrain

2017-05-10
2017-01-1925
With the implementation of EURO VI and similar emission legislation, the industry assumed the pace and stringency of new legislation would be reduced in the future. The latest announcements of proposed and implemented legislation steps show that future legislation will be even more stringent. The currently leading announced legislation, which concerns a large number of global manufacturers, is the legislation from the United States (US) Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Both announced new legislation for CO2, Greenhouse Gas (GHG) Phase II. CARB is also planning additional Ultra Low NOx regulations. Both regulations are significant and will require a number of technologies to be used in order to achieve the challenging limits. AVL published some engine related measures to address these legislation steps.
Technical Paper

Highly Integrated Fuel Cell Analysis Infrastructure for Advanced Research Topics

2017-03-28
2017-01-1180
The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
Technical Paper

Systematic Development of Hybrid Systems for Commercial Vehicles

2011-10-06
2011-28-0064
The reduction of CO₂ emissions represents a major goal of governments worldwide. In developed countries, approximately 20% of the CO₂ emissions originate from transport, one third of this from commercial vehicles. CO₂ emission legislation is in place for passenger cars in a number of major markets. For commercial vehicles such legislation was also already partly published or is under discussion. Furthermore the commercial vehicles market is very cost sensitive. Thus the major share of fuel cost in the total cost of ownership of commercial vehicles was already in the past a major driver for the development of efficient drivetrain solutions. These aspects make the use of new powertrain technologies, specifically hybridization, mandatory for future commercial powertrains. While some technologies offer a greater potential for CO₂ reduction than others, they might not represent the overall optimum with regard to the total cost of ownership.
Technical Paper

Functional Integration as Key for Affordable Electrified Passenger Car Powertrains

2013-01-09
2013-26-0067
Further fuel efficiency improvements are mandatory in order to achieve the CO2 emission limits envisaged in the future. Electrification of the powertrain is seen as one of the key technologies to achieve these future goals. However, electrification of the power train typically goes with a massive cost increase of the overall system itself which is especially crucial for cost sensitive markets like India. AVL's approach to cost reduction for comparable performance and fuel consumption target values is an integration of functions. This paper demonstrates that, through a deeper interaction of the single powertrain components, further fuel efficiency optimization may be gained. System optimization at a powertrain level enables the achievement of future powertrain targets with respect to fuel efficiency and performance with only minimal and reduced requirements at a component level (i.e. combustion engine, electric drive, transmission and battery).
Technical Paper

A Novel Ultrasonic Intake Air Flow Meter for Test Bed Applications

2013-01-09
2013-26-0118
The development process of a combustion engine is now a days strongly influenced by future emission regulations which require further reduction in fuel consumption and precise control of combustion process based on Intake air measurement, during engine development. Intake air flow meters clearly differentiate themselves from typical industrial gas flow meters because of their ability to measure extremely dynamic phenomenon of combustion engine. Thus, high internal data acquisition rate, short response time, ability to measure pulsating and reverse flows with lower measurement uncertainty are the factors that ensures the reliability of the results without being affected by ambient influences, sensor contamination or sensor aging. The AVL developed FLOWSONIX™ is based on ultrasonic transit time measuring principle with broad-band Capacitive Ultrasonic Transducer (CUT) characterized by an excellent air impedance matching strongly distinguishes itself by fulfilling all those requirements.
Technical Paper

Thermal Propagation of Li-Ion Batteries: A Simulation Methodology for Enhanced and Accelerated Virtual Development

2022-10-05
2022-28-0101
The safety of BEVs in driving, charging and parking condition is essential for the success of electrification in automotive industry as well as key driver of any future development of Li-Ion HV battery. AVL has developed a unique simulation approach in which the multi-physical behavior of the single cell in thermal runaway is modelled and applied to module, pack or vehicle level. In addition and beside this cell behavior, various more physical phenomena during thermal propagation on pack level are considered and predicted by the simulation method: component melting, ignition and flammibilty of venting gas and HV failures.
Technical Paper

Evaluation of a New Design for CVS-Systems Meeting the Requirements of S-ULEV and EURO IV

2000-03-06
2000-01-0800
The latest legislation requires the automotive industry to once again reduce the emission levels of their latest vehicles. This leads to a new challenge in the field of emission measurement, because the concentrations of certain components of the exhaust gases are extremely low. For current measurement devices, which are recommended by the legislation, it is almost impossible to determine such low emission levels with the necessary accuracy. This study evaluates the features of an improved CVS system (Constant Volume Sampling) with the possibility of heating and the ability of changing flow rates quickly. Possible solutions are discussed and the properties of data measured with test facilities which are prepared to cover S-ULEV and EURO IV applications are described. The tests were performed on a dynamic engine test bed which was equipped with such a CVS system and with emission analyzing systems for raw exhaust and diluted measurements.
Technical Paper

Integrated Toolchain for Powertrain Optimization for Indian Commercial Vehicles

2015-01-14
2015-26-0032
Best fuel efficiency is one of the core requirements for commercial vehicles in India. Consequently it is a central challenge for commercial vehicle OEMs to optimize the entire powertrain, hence match engine, transmission and rear axle specifications best to the defined application. The very specific real world driving conditions in India (e.g. traffic situations, road conditions, driver behavior, etc.) and the large number of possible commercial powertrain combinations request an efficient and effective development methodology. This paper presents a methodology and tool chain to specify and develop commercial powertrains in a most efficient and effective way. The methodology is based on the measurement of real world driving scenarios, identification of representative Real World Driving Profiles and vehicle system simulation which allows extended analysis of the road topography, the traffic situation as well as the driver behavior.
X