Criteria

Text:
Sector:
Affiliation:
Display:

Results

Viewing 1 to 19 of 19
2010-09-28
Technical Paper
2010-01-1872
Marie Jonsson, Tom Murray, Anders Robertsson, Andreas Stolt, Gilbert Ossbahr PhD, Klas Nilsson
Variability in composite manufacture and the limitations in positional accuracy of common industrial robots have hampered automation of assembly tasks within aircraft manufacturing. One way to handle geometry variations and robot compliancy is to use force control. Force control technology utilizes a sensor mounted on the robot to feedback force data to the controller system so instead of being position driven, i.e. programmed to achieve a certain position with the tool, the robot can be programmed to achieve a certain force. This paper presents an experimental case where a compliant rib is aligned to multiple surfaces using force feedback and an industrial robot system from ABB. Two types of ribs where used, one full size carbon fiber rib, and one smaller metal replica for evaluation purposes. The alignment sequence consisted of several iterative steps and a search procedure was implemented within the robot control system.
2010-09-28
Technical Paper
2010-01-1873
Peter Helgosson, Gilbert Ossbahr, David Tomlinson
This paper will present the latest development of a configurable and modular steel construction system for use in frameworks of flexible fixtures of the kind called Affordable Reconfigurable Fixtures (ART). Instead of a dedicated aircraft fixture, which is very time consuming and expensive, the ART fixtures enable affordable construction from a standard component kit, by solving the main drawbacks of traditional tooling. In early 2009 Airbus UK built the first steel modular fixture for the aerospace industry. The project was a partnership with DELFOi and Linköping University in a project called ReFlex, Reconfigurable Flexible Tooling. A paper was presented in the last year SAE conference which explained about the project in overall. The construction system called BoxJoint has recently been tested in some manufacturing areas at Airbus UK and also been applied in the production at Saab Aerospace Linköping Sweden.
2007-09-17
Technical Paper
2007-01-3870
Rob Buckingham, Vilas Chitrakaran, Rosalind Conkie, Geoff Ferguson, Andrew Graham, Alex Lazell, Mariusz Lichon, Nick Parry, Fred Pollard, Amir Kayani, Mike Redman, Mark Summers, Brett Green
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robots to conduct assembly tasks within wing boxes - an area currently inaccessible for automation. The composite, single skin construction of aircraft structures presents new assembly challenges. Currently during box close-out it is necessary for aircraft fitters to climb into the wing box through small access panels and use manual or power tools to perform a variety of tasks. In future wing designs it may be that certain parts of the wing do not provide adequate access for manual assembly methods. It is also known that these manual interventions introduce health and safety concerns with their associated costs. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. Such a development has broader implications for aircraft design and assembly.
2006-09-12
Technical Paper
2006-01-3141
Rosalind Anscombe, Andrew Bryant, Rob Buckingham, Geoff Ferguson, Andrew Graham, Mariusz Lichon, Nick Parry, Paul Brandrick, Mike Redman, Mark Summers, Brett Green
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robot technology suitable for conducting automated inspection and assembly tasks within wing boxes. The composite, single skin construction of aircraft structures presents new challenges for robotic assembly. During box close-out it is necessary for aircraft fitters to climb into the wing box through a small access panel and use manual or power tools to perform a variety of tasks. These manual interventions give rise to a number of health and safety concerns. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. The advantages of automating in-wing processes will be discussed. This paper presents early stage results of the demonstration snake-arm robot and outlines expectations for future development.
2006-09-12
Technical Paper
2006-01-3162
Benjamen Hempstead, Brent Thayer, Stephen Williams
A custom 5-axis machine tool is constructed to enable fully automated drilling and slave-bolt insertion of composite and metallic wingbox components for a new military transport aircraft. The machine tool can be transported to serve many assembly jigs within the cell. Several features enhance accuracy, capability, and operator safety.
2003-09-08
Technical Paper
2003-01-2940
Scott Hogan, John Hartmann, Brent Thayer, Jack Brown, Ian Moore, Jim Rowe, Mark Burrows
On Airbus aircraft, the undercarriage reinforcing is attached through the lower wing skin using bolts up to 1-inch in diameter through as much as a 4-inch stack up. This operation typically takes place in the wing box assembly jigs. Manual hole drilling for these bolts has traditionally required massive drill templates and large positive feed drill motors. In spite of these large tools, the holes must be drilled in multiple steps to reduce the thrust loads, which adds process time. For the new A380, Airbus UK wanted to explore a more efficient method of drilling these large diameter holes. Introducing automated drilling equipment, which is capable of drilling these holes and still allows for the required manual access within the wing box assembly jig, was a significant challenge. To remain cost effective, the equipment must be flexible and mobile, a llowing it to be used on multiple assemblies.
2002-09-30
Technical Paper
2002-01-2632
Frederic Latger, Tom Harris, Stephan Björklund
The paper describes a way of generating a cost model, which is aimed to compare different drilling processes. The development of this tool is a part of an ongoing European Union funded aircraft industry project called ADFAST (Automation for Drilling, Fastening, Assembly, Systems Integration, and Tooling). This part of the project involves 4 industrial partners, (Alenia, Airbus Espana SL, Airbus UK and Saab AB), 1 equipment developer (Novator AB) and 1 academic institute (Linkoping University). The model has been created to enable the benefits of an advanced system such as orbital drilling to be quantified. The model is able to generate a cycle time and a cost for the whole drilling process involving equipment, consumables and assembly of varied aircraft structures. The challenge of the task was to develop the ability of modeling a process with a sequence of drilling operations that the model user, in an intuitive way, can select and modify.
2002-09-30
Technical Paper
2002-01-2634
Graham Burley, John Corbett, Randolph Odi, Soe Naing
This paper describes and demonstrates the use of an assembly centric design algorithm as an aid to achieving minimal hard tooling assembly concepts. The algorithm consists of a number of logically ordered design methodologies and also aids the identification of other enabling technologies. Included in the methodologies is an innovative systems analysis tool that enables the comparison of alternative assembly concepts, and the prediction and control of the total assembly error, at the outline stage of the design.
2002-10-01
Technical Paper
2002-01-2650
Sten Å. H. Johansson, Gilbert C. R. Ossbahr, Tom Harris
This paper describes ongoing research on the effects of hole quality on basic material properties / allowables of carbon fibre composite material. Using a novel test programme, the benefits of orbital drilling over traditional (or conventional) methods have been compared. Static (compression and tension) and dynamic (fatigue) tests have been performed on standard aerospace industry coupons. In order to identify the influence of the drilling method on the fracture behavior and fatigue properties of the material, acoustic emission has been performed during the testing. Roundness and surface replica studies have enabled the geometrical properties of the holes to be defined at different stages of the test. These measurement techniques were performed in order to correlate and understand the preliminary results of the tests.
2005-10-03
Technical Paper
2005-01-3300
Scott Tomchick, Peter Zieve, Carter Boad, Adam Wellsbury
A new method of installing LGP collars onto titanium lock bolts has been brought into production in the Airbus wing manufacturing facility in Broughton, Wales. The feed system involves transporting the collar down a rectangular cross-sectioned hose, through a rectangular pathway in the machine clamp anvil to the swage die without the use of fingers or grippers. This method allows the reliable feeding the collars without needing to adjust the position of feed fingers or grippers relative to the tool centerline. Also, more than one fastener diameter can be fed through one anvil geometry, requiring only a die change to switch between certain fastener diameters. In our application, offset and straight stringer geometries are accommodated by the same anvil.
2005-10-03
Technical Paper
2005-01-3336
Mark Summers
The paper details two phases of work completed by Airbus UK to create a standard deployment platform for robotic processes. The initial part of the paper focuses on an aerospace capability study developed to benchmark a number of robot models. The tests define absolute accuracies within full and restricted work envelopes, static and dynamic flexure, and temperature effects on the robot manipulator. The second part of the paper describes the development of an adaptive control process to accurately position singular or co-operating robots within a large working envelope. The solution is not dependent on complex software algorithms within the robot controller or restrictive laser metrology interfaces. The paper illustrates how a number of standard industrial products can be ‘fused together’ to provide a robust industrial solution.
2007-09-17
Technical Paper
2007-01-3795
Barry Richards, Kenny Howard, Stephen Williams
The Airbus A400m has carbon fibre wing panels on both the upper and lower surfaces. When manufactured, these panels come supplied with various lugs on the periphery of the panel. Some are used for lifting the panel, some are used for indexing the panel; however, all lugs must be removed at some time during wing build. Lug thickness varies from 4mm to 14mm; in addition, many lugs must be cut to a 2D profile rather than just straight. The main challenge of the project was to deliver a tool that was small, portable and compact, but that could also accurately slot thick carbon fibre panels, without de-lamination, leaving a good surface finish. The solution was an air powered routing hand tool that was mechanically guided along a 2D path using a cam profile. Special diamond grit cutters were used to cut the initial slot and reduce the machining forces to a bare minimum, with the finishing cut done using a PCD router bit to obtain a good surface finish.
2006-09-12
Technical Paper
2006-01-3127
Jacob Rower, Nigel Izzard, Stephen Williams
A large free-standing structure is constructed to positively position the spar and related components in the major assembly jig of the wing for a military transport aircraft. The beam of this structure is mounted on mechanisms enabling the lateral retraction of the beam and tooling to provide full part loading access and extraction of a completed wing. The free-standing nature of this design also allows full integration of an automated drilling machine into the jig.
2015-09-15
Technical Paper
2015-01-2489
Philippe Le Vacon, Thomas Buisson, Fabien Albert
This paper presents an innovative solution of portable drilling machine, lightweight and low cost, dedicated to drilling operations on single and double curved aircraft structure. Aircraft Standard drilling process mainly uses drilling templates combined with Automated Drilling Units (ADU) which is a very efficient solution. However, the management of templates and ADUs is a time consuming and costly task in regards to the large quantity of existing references spread over every aircraft production sites. Therefore, to help reducing those costs and also workload, the concept of the Numerical Template (NCT) has been designed, using classic and robust mechanical devices, hand-held, lightweight and universal. NCT architecture concept could led to a family of NCT with different dimensions of frame parts(X,Y,Z), fitted to the targeted area geometry. The system is able to guaranty an accuracy of ± 0.5 mm and a normality of ±0.5°.
2016-09-27
Technical Paper
2016-01-2108
Marc Fette, Kim Schwake, Jens Wulfsberg, Frank Neuhaus, Manila Brandt
Abstract The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
2016-09-27
Journal Article
2016-01-2118
Patrick Land, Luis De Sousa, Svetan Ratchev, David Branson, Harvey Brookes, Jon Wright
Abstract With increased demand for composite materials in the aerospace sector there is a requirement for the development of manufacturing processes that enable larger and more complex geometries, whilst ensuring that the functionality and specific properties of the component are maintained. To achieve this, methods such as thermal roll forming are being considered. This method is relatively new to composite forming in the aerospace field, and as such there are currently issues with the formation of part defects during manufacture. Previous work has shown that precise control of the force applied to the composite surface during forming has the potential to prevent the formation of wrinkle defects. In this paper the development of various control strategies that can robustly adapt to different complex geometries are presented and compared within simulated and small scale experimental environments, on varying surface profiles.
2016-09-27
Journal Article
2016-01-2120
David Judt, Kevin Forster, Helen Lockett, Craig Lawson, Philip Webb
Abstract In the civil aircraft industry there is a continuous drive to increase the aircraft production rate, particularly for single aisle aircraft where there is a large backlog of orders. One of the bottlenecks is the wing assembly process which is largely manual due to the complexity of the task and the limited accessibility. The presented work describes a general wing build approach for both structure and systems equipping operations. A modified build philosophy is then proposed, concerned with large component pre-equipping, such as skins, spars or ribs. The approach benefits from an offloading of the systems equipping phase and allowing for higher flexibility to organize the pre-equipping stations as separate entities from the overall production line. Its application is presented in the context of an industrial project focused on selecting feasible system candidates for a fixed wing design, based on assembly consideration risks for tooling, interference and access.
2013-09-17
Journal Article
2013-01-2261
Verena Cavalheiro, Svetan Ratchev, Mark Summers
This paper details the development of a user-friendly computerised tool created to evaluate the Manufacturing Readiness Levels (MRL) of an emerging technology. The main benefits achieved are to manage technology development planning and tracking, make visually clear and standardised analysis, and improve team communication. The new approach is applied to the Technology Readiness Levels (TRL), currently used by Airbus Research & Technology (R&T) UK. The main focus is on the improvement of the analysis criteria. The first phase of the study was to interpret the manufacturing criteria used by Airbus at TRL 4, including a brief benchmarking review of similar practices in industry and other Airbus' project management tools. All information gathered contributed to the creation of a complete set of criteria.
2017-09-19
Journal Article
2017-01-2153
Patrick Land, Petros Stavroulakis, Richard Crossley, Patrick Bointon, Harvey Brookes, Jon Wright, Svetan Ratchev, David Branson
Abstract Inspection of Composite panels is vital to the assessment of their ability to be fit for purpose. Conventional methods such as X-ray CT and Ultrasonic scanning can be used, however, these are often expensive and time consuming processes. In this paper we investigate the use of off-the-shelf Non-Destructive Test, NDT, equipment utilizing Fringe projection hardware and open source software to rapidly evaluate a series of composite panels. These results are then verified using destructive analysis of the panels to prove the reliability of the rapid NDT methods for use with carbon composite panels. This process allows us to quickly identify regions of geometric intolerance or formed defects without the use of expensive sub-surface scanning systems, enabling a fast and cost effective initial part evaluation system. The focus of this testing series is on 6mm thick pre-preg carbon-epoxy composite laminates that have been laid up using AFP and formed using TRF.
Viewing 1 to 19 of 19

    Filter

    • Aerospace
      19
    • Range:
      to:
    • Year: