Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Investigation of Mars In-Situ Propellant Production

1997-07-01
972496
In-situ production of oxygen and methane for utilization as a return propellant from Mars for both sample-return and manned missions is currently being developed by NASA in cooperation with major aerospace companies. Various technologies are being evaluated using computer modeling and analysis at the system level. An integrated system that processes the carbon dioxide in the Mars atmosphere to produce liquid propellants has been analyzed. The system is based on the Sabatier reaction that utilizes carbon dioxide and hydrogen to produce methane and water. The water is then electrolyzed to produce hydrogen and oxygen. While the hydrogen is recycled, the propellant gases are liquefied and stored for later use. The process model considers the surface conditions on Mars (temperature, pressure, composition), energy usage, and thermal integration effects on the overall system weight and size. Current mission scenarios require a system that will produce 0.7 kg of propellant a day for 500 days.
Technical Paper

Diode-Laser Spectral Absorption-Based Gas Species Sensor for Life Support Applications

1997-07-01
972388
We present the development of a semiconductor diode laser spectral absorption based gas species sensor for oxygen concentration measurements, intended for life support system monitoring and control applications. Employing a novel self-compensating, noise cancellation detection approach, we experimentally demonstrate better than 1% accuracy, linearity, and stability for monitoring breathing air conditions with 0.2 second response time. We also discuss applications of this approach to CO2 sensing.
Technical Paper

Performance of the Atmosphere Revitalization System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972418
The Lunar-Mars Life Support Test Project (LMLSTP), formerly known as the Early Human Testing Initiative (EHTI), was established to perform the necessary research, technology development, integration, and verification of regenerative life support systems to provide safe, reliable, and self-sufficient human life support systems. Four advanced life support system test phases make up LMLSTP. Phase I of the test program demonstrated the use of plants to provide the atmosphere revitalization requirements of a single test subject for 15 days. The primary objective of the Phase II test was to demonstrate an integrated regenerative life support system capable of sustaining a human crew of four for 30 days in a closed chamber. The third test phase, known as Phase IIA, served as a demonstration of International Space Station (ISS) representative life support technology, supporting a human crew of four for 60 days.
Technical Paper

Columbus Orbital Facility Condensing Heat Exchanger and Filter Assembly

1997-07-01
972409
Space environmental control systems must control cabin temperature and humidity. This can be achieved by transferring the heat load to a circulating coolant, condensing the humidity, and separating the condensate from the air stream. In addition, environmental control systems may be required to remove particulate matter from the air stream. An assembly comprised of a filter, a condensing heat exchanger, a thermal control valve, and a liquid carryover sensor, is used to achieve all these requirements. A condensing heat exchanger and filter assembly (CHXFA) is being developed and manufactured by SECAN/AlliedSignal under a contract from Dornier Daimler-Benz as part of a European Space Agency program. The CHXFA is part of the environmental control system of the Columbus Orbital Facility (COF), the European laboratory module of the International Space Station (ISS).
Technical Paper

A Thermal Control System Dual-Membrane Gas Trap for the International Space Station

1997-07-01
972410
The dual membrane gas trap filter is utilized in the internal thermal control system (ITCS) as part of the pump package assembly to remove non-condensed gases from the ITCS coolant. This improves pump performance and prevents pump cavitation. The gas trap also provides the capability to vent air that is Ingested into the ITCS during routine maintenance and replacement of the International Space Station (ISS) system orbital replacement units. The gas trap is composed of two types of membranes that are formed into a cylindrical module and then encased within a titanium housing. The non-condensed gas that is captured is then allowed to escape through a vent tube in the gas trap housing.
Technical Paper

Periodic 10 K Metal Hydride Sorption Cryocooler System

1994-06-01
941621
A program is being performed to design, fabricate, and test a metal hydride sorption cryocooler system capable of supplying periodic refrigeration at 10 K. The system is intended to cool a focal plane array for a low-earth orbit satellite. The refrigeration is effected by sublimating solid hydrogen at 10 K. The solid hydrogen is produced in a batch process by cooling, solidifying, and subcooling liquid hydrogen formed at 30 K by a Joule-Thomson expansion. The spent hydrogen from the sublimation and Joule-Thomson expansion is absorbed by two metal hydride sorption bed assemblies.
Technical Paper

An Advanced Water Recovery Program

1996-07-01
961336
This paper reviews designs of urine distillation systems for spacecraft water recovery. Consideration is given to both air evaporation and vacuum distillation cycles, to the means for improving cycle performance (such as heat pumps, multistaging, and rotary evaporators), and to system concepts offering promise for future development. Vacuum distillation offers lower power consumption, at some increase in system complexity; air evaporation distillation is capable of providing higher water recovery efficiency, which could offset the lower power consumption advantage of vacuum distillation for long-duration missions.
Technical Paper

Development of a Regenerable Metal Oxide CO2 Absorber for EMU Applications

1996-07-01
961483
A regenerable metal oxide CO2 absorber is being developed for future Extravehicular Mobility Unit (EMU) applications. It was designed to fit the existing shuttle EMU without modification of the interfaces. Absorption and regeneration tests were performed with subscale and full-size laboratory absorbers. Data is presented for open and closed loop absorber tests that evaluate the effects of residence time, mass velocity, and internal temperature on performance, with emphasis is on the full-size test unit. Regeneration testing quantified the effects of temperature and air flow rate on desorption rate, and of various absorber cooling modes. Its objective was to optimize conditions for minimum peak power and minimum total energy consumption.
Technical Paper

A Two-Phase Fluid Pump for Use in Microgravity Environments

1999-07-12
1999-01-1979
The two-phase pump assembly (TPPA) supports advanced thermal control systems (TCS) being developed for future orbital and deep space missions that continuously demand technological advancements to reduce cost, schedule, size, and weight. The TCS provides cooling to onboard personnel and systems by utilizing a coolant in which the working fluid undergoes vaporization and condensation while circulating in the coolant fluid loop. The considerable latent heat associated with these liquid-vapor phase transitions allows the working fluid to absorb and transport a given amount of heat energy with a significantly reduced coolant flow rate resulting in a smaller system size, volume, and mass. Properly designed heat exchangers which utilize boiling and condensation phase transitions can be made smaller and lighter than single-phase systems for a given heat dissipation load.
X