Criteria

Text:
Content:
Display:

Results

Viewing 1 to 7 of 7
2012-03-27
Video
Over the past several years, new recommended practices for testing plug-in vehicles have been developed by SAE standards committees. At first only proprietary or prototype vehicles were available to validate new procedures. However, with the recent availability of Chevy Volt and Nissan Leaf, these test procedures were put to the test in Argonne�s National Laboratory�s dynamometer test facility. Procedures for the Volt were according to the SAE J1711 procedures. The Leaf was tested according to procedures still under development in the SAE J1634 task force. Identified were aspects of the tests that were successful and areas where more development is needed. As described in SAE J2841, the Volt results were analyzed using a �utility factor� to estimate in-use expectations of electric-only miles.
2012-06-06
Video
This presentation will introduce the overall goals of the EcoCAR competition in brief, and will go into the third and final year of the competition in detail. The final year of competition saw teams refining and testing their student-built advanced technology vehicles including hybrids, plug-in hybrids, hydrogen fuel cell PHEVs and one battery electric. Important events, such as the Spring Workshop chassis dynamometer testing event at the U.S. Environmental Protection agency, as well as significant competition results, such as vehicle performance, consumer acceptability and efficiency will be presented. Presenter Patrick Walsh
2012-05-25
Video
The first commercially available plug-in hybrid electric vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in mid-December 2010. The Volt uses a series-split powertrain architecture, which provides benefits over the series architecture that typically has been considered for use in electric-range extended vehicles (EREVs). A specialized EREV powertrain, called the Voltec, drives the Volt through its entire range of speed and acceleration with battery power alone and within the limit of battery energy, thereby displacing more fuel with electricity than a PHEV, which characteristically blends electric and engine power together during driving. This paper assesses the benefits and drawbacks of these two different plug-in hybrid electric architectures (series versus series-split) by comparing component sizes, system efficiency, and fuel consumption over urban and highway drive cycles.
2011-11-08
Video
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
2012-05-25
Video
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
2012-06-05
Video
The Hybrid Electric Vehicle Team of Virginia Tech participated in the three-year EcoCAR Advanced Vehicle Technology Competition organized by Argonne National Laboratory, and sponsored by General Motors and the U.S. Department of Energy. The team established goals for the design of a plug-in, range-extended hybrid electric vehicle that meets or exceeds the competition requirements for EcoCAR. The challenge involved designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use, regulated tailpipe emissions, and well-to-wheel greenhouse gas emissions. To interface with and control the hybrid powertrain, the team added a Hybrid Vehicle Supervisory Controller, which enacts a torque split control strategy. This paper builds on an earlier paper [1] that evaluated the petroleum energy use, criteria tailpipe emissions, and greenhouse gas emissions of the Virginia Tech EcoCAR vehicle and control strategy from the 2nd year of the competition.
2011-11-18
Video
Electric vehicle codes and standards play a key role in deployment of interoperable charging and communication infrastructure. Harmonization of those standards on a global basis, even though they are not identical, they need to be compatible. There are a comprehensive set of EV standards, even standards to ensure that the EV, EVSE, energy measurement and electric utility are compatible (SAE J2953). This presentation is a summary of the state of standards and some of the commercial deployment of equipment that meets these standards. Presenter Eric Rask, Argonne National Laboratory
Viewing 1 to 7 of 7