Viewing 1 to 30 of 33
Technical Paper
Scott A. Miers, Stephen A. Ciatti
The purpose of this study was to determine the effect of injector nozzle hole size, shape, and finish on performance and emissions in a light-duty diesel engine. Two sets of six-hole valve covered orifice (VCO) nozzles were tested with nearly identical volumetric flow rates but varying geometry and finish. The 17% hydro-erosion (HE) nozzles had a 22% larger discharge coefficient (CD), compared to the 7% HE nozzles. In order to maintain similar volumetric flow rates, the orifice diameter of the 17% HE nozzles were reduced by almost 10%.The nozzles were tested in a 1.7L, four-cylinder, common rail diesel engine, operating on conventional D2 diesel fuel. The 17% HE, conical-shaped nozzles reduced fuel specific particulate matter (PM) and increased fuel specific oxides of nitrogen (NOx) emissions, over the 7% HE, straight-shaped nozzle.
Technical Paper
Mateos Kassa, Carrie Hall, Andrew Ickes, Thomas Wallner
Abstract Recent developments in advanced combustion engines have demonstrated the potential increases in efficiency and reductions in emissions through low temperature combustion (LTC). These combustion modes often rely on high exhaust gas recirculation (EGR), early fuel injection systems, and in some cases a combination of fuels with different reactivities. Despite the advantages of LTC, such operations are highly sensitive to the in-cylinder pre-combustion conditions and face significant challenges in multi-cylinder operation due to cylinder-to-cylinder variations of the combustion process. The cause of cylinder-to-cylinder variations is strongly tied to non-uniform trapped mass. In particular, in-cylinder oxygen concentration plays a critical role in the combustion process of each cylinder and can be leveraged to predict combustion characteristics and to develop control algorithms that mitigate cylinder-to-cylinder variation.
Journal Article
Mehdi Modares, Joshua Bergerson
Abstract In order to ensure the safety of a structure, adequate strength for structural elements must be provided. Moreover, catastrophic deformations such as buckling must be prevented. Using the linear finite element method, deterministic buckling analysis is completed in two main steps. First, a static analysis is performed using an arbitrary ordinate applied loading pattern. Using the obtained element axial forces, the geometric stiffness of the structure is assembled. Second, an eigenvalue problem is performed between structure's elastic and geometric stiffness matrices, yielding the structure's critical buckling loads. However, these deterministic approaches do not consider uncertainty the structure's material and geometric properties. In this work, a new method for finite element based buckling analysis of a structure with uncertainty is developed.
Technical Paper
M. Ray Fairchild, Ralph Taylor, Carl Berlin, Celine Wong, Beihai Ma, U. (Balu) Balachandran
Abstract The propulsion system in most Electric Drive Vehicles (EDVs) requires an internal combustion engine in combination with an alternating current (AC) electric motor. An electronic device called a power inverter converts battery DC voltage into AC power for the motor. The inverter must be decoupled from the DC source, so a large DC-link capacitor is placed between the battery and the inverter. The DC-link capacitors in these inverters negatively affect the inverters size, weight and assembly cost. To reduce the design/cost impact of the DC-link capacitors, low loss, high dielectric constant (κ) ferroelectric materials are being developed. Ceramic ferroelectrics, such as (Pb,La)(Zr,Ti)O3 [PLZT], offer high dielectric constants and high breakdown strength. Argonne National Laboratory and Delphi Electronics & Safety have been developing thin-film capacitors utilizing PLZT.
Journal Article
Matthew Langholtz, Mark Downing, Robin Graham, Fred Baker, Alicia Compere, William Griffith, Raymond Boeman, Martin Keller
Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg−1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%.
Technical Paper
Ali Erdemir, George R. Fenske
Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce the sliding friction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal-formability tests indicated that the boric acid films applied to aluminum surfaces worked quite well, improving draw scale performance by 58 to 75%.
Technical Paper
Ramesh B. Poola, Kevin C. Stork, Raj Sekar, Kevin Callaghan, Stuart Nemser
Air can be enriched with oxygen and/or nitrogen by selective permeation through a nonporous polymer membrane; this concept offers numerous potential benefits for piston engines. The use of oxygen-enriched intake air can significantly reduce exhaust emissions (except NOx), improve power density, lessen ignition delay, and allow the use of lower-grade fuels. The use of nitrogen-enriched air as a diluent can lessen NOx emissions and may be considered an alternative to exhaust gas recirculation (EGR). Nitrogen-enriched air can also be used to generate a monatomic-nitrogen stream, with nonthermal plasma, to treat exhaust NOx. With such synergistic use of variable air composition from an on-board polymer membrane, many emissions problems can be solved effectively. This paper presents an overview of different applications of air separation membranes for diesel and spark-ignition engines. Membrane characteristics and operating requirements are examined for use in automotive engines.
Technical Paper
Joseph A. Pomykala, Bassam J. Jody, Jeffrey S. Spangenberger, Edward J. Daniels
The process of shredding end-of-life vehicles to recover metals results in a byproduct commonly referred to as shredder residue. The four and a half million metric tons of shredder residue produced annually in the United States is presently land filled. To meet the challenges of automotive materials recycling, the U.S. Department of Energy is supporting research at Argonne National Laboratory in cooperation with the Vehicle Recycling Partnership (VRP) of the United States Council for Automotive Research (USCAR) and the American Plastics Council. This paper presents the results of a study that was conducted by Argonne to determine variations in the composition of shredder residue from different shredders. Over 90 metric tons of shredder residues were processed through the Argonne pilot plant. The contents of the various separated streams were quantitatively analyzed to determine their composition and to identify materials that should be targeted for recovery.
Technical Paper
Paul Nelson, Dennis Dees, Khalil Amine, Gary Henriksen
This study involves the battery requirements for a fuel cell-powered hybrid electric vehicle. The performances of the vehicle [a 3200-lb (1455-kg) sedan], the fuel cell, and the battery were evaluated in a vehicle simulation. Most of the attention was given to the design and performance of the battery, a lithium-ion, manganese spinel-graphite system of 75-kW power to be used with a 50-kW fuel cell. The total power performance of the system was excellent at the full operating temperatures of the fuel cell and battery. The battery cycling duty is very moderate, as regenerative braking for the Federal Urban Driving Schedule and the Highway Fuel Economy Test cycles can do all charging of the battery. Cold start-up at 20°C is straightforward, with full power available immediately.
Technical Paper
W.N. Liu, K.S. Choi, X. Sun, M.A. Khaleel, Yang Ren, N. Jia, Yangdong Wang
Microstructure level inhomogeneities between the harder martensite phase and the softer ferrite phase render the dual phase (DP) steels more complicated failure mechanisms and associated failure modes compared to the conventionally used low alloy homogenous steels. This paper examines the failure mode DP780 steel under different loading conditions using finite element analyses on the microstructure levels. Micro-mechanics analyses based on the actual microstructures of DP steel are performed. The two-dimensional microstructure of DP steel was recorded by scanning electron microscopy (SEM). The plastic work hardening properties of the ferrite phase was determined by the synchrotron-based high-energy X-ray diffraction technique. The work hardening properties of the martensite phase were calibrated and determined based on the uniaxial tensile test results. Under different loading conditions, different failure modes are predicted in the form of plastic strain localization.
Technical Paper
Kaushik Saha, Ahmed Abdul Moiz, Anita Ramirez, Sibendu Som, Munidhar Biruduganti, Michael Bima, Patrick Powell
Abstract The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
Technical Paper
Bipin Bihari, Steenath B. Gupta, Munidhar Biruduganti, Raj R. Sekar
Two diagnostics were developed that are particularly suitable for use with natural gas-fuelled reciprocating engines that are used for power generation applications. The first diagnostic relates flame chemiluminescence to thermodynamic metrics relevant to engine combustion - Heat Release Rate (HRR) and in-cylinder bulk gas temperature. Studies were conducted in a single-cylinder natural gas-fired reciprocating engine that could simulate turbocharged conditions with Exhaust Gas Recirculation. Crank-angle-resolved spectra (266 to 795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions and by holding the speed at 1800 rpm and Brake Mean Effective Pressure (BMEP) at 12 bar. The effect of dilution on CO₂* chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6 - 1.0) and by varying the Exhaust Gas Recirculation rate.
Journal Article
Katarzyna E. Matusik, Daniel J. Duke, Alan L. Kastengren, Christopher F. Powell
Abstract The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from the sparking event is difficult to obtain. In this paper, we present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug.
Technical Paper
Ali Erdemir, Orhan Ozturk, Muhammed Alzoubi, John Woodford, Layo Ajayi, George Fenske
While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO2 emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. Our research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems.
Technical Paper
Ezzat Danial Doss, Rajesh Ahluwalia, Romesh Kumar
The operating pressure is one of the critical issues in designing a gasoline-fueled PEM fuel cell system for transportation applications. Pressurized (3atm) and atmospheric pressure (1atm) fuel cell systems are being considered by various developers for automotive applications. Systems analyses have been performed for the two systems using GCtool, a computer simulation code developed at Argonne National Laboratory. The two systems were designed for comparable overall system efficiencies at a rated design power of 50 kW. The characteristics and performance of the different components of the two systems were compared at the design power and at part-load operating conditions. Transient analyses were performed to investigate the dynamic response of the two systems during cold startup. The pros and cons of the two systems regarding their performance, size, and preliminary cost estimates are presented.
Technical Paper
Linda Gaines, Roy Cuenca
One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is lithium ion. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from being able to meet the cost goals. The Center for Transportation Research at Argonne National Laboratory (Argonne) undertook a project for the United States Department of Energy (USDOE) to estimate costs of lithium ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, or development of new supplies.
Technical Paper
O. O. Ajayi, G. R. Fenske, A. Erdemir, J. Woodford, J. Sitts, K. Elshot, K. Griffey
In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the U.S. Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. We presents here an evaluation of the Argonne coating for air compressor thrust bearings.
Technical Paper
Bassam J. Jody, Joseph A. Pomykala, Edward J. Daniels
A process to recover carbon fibers from obsolete polymer matrix composite (PMC) materials has been developed. Carbon fibers have been recovered from samples containing urethane-based or epoxy-based substrates. An experimental parametric study conducted on both the bench-scale and the pilot-scale has been done to determine the least-cost process conditions. Based on this study, we have evaluated process economics that suggested a payback of about one year. This process is also applicable to polymer matrix composite materials made with thermoplastic substrates. This paper presents the results of the experimental testing campaign and the results of the process economic analysis.
Technical Paper
Raymond A. Sutula, Kenneth L. Heitner, James A. Barnes, Tien Q. Duong, Connie Bezanson, Robert S. Kirk, Vince Battaglia, Gary Henriksen, Frank McLarnon, B. J. Kumar
The successful commercialization of Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) can provide significant benefits by reducing the United States' growing dependence on petroleum fuels for transportation; decreasing polluting and greenhouse gas emissions; and facilitating a long-term transition to sustainable renewable energy sources. Recognizing these benefits, the U.S. Department of Energy (DOE) supports an active program of long-range R&D to develop electric vehicle (EV) and hybrid electric vehicle (HEV) technologies and to accelerate their commercialization. The DOE Office of Advanced Automotive Technologies (OAAT) supports several innovative R&D programs, conducted in partnership with DOE's national laboratories, industry, other government agencies, universities, and small businesses. The Office has two key R&D cooperative agreements with the U.S. Advanced Battery Consortium (USABC) to develop high-energy batteries for EVs and high-power batteries for HEVs.
Technical Paper
Paul Nelson, Ira Bloom, Khalil Amine, Gary Henriksen
In this study, three batteries were designed and these designs were evaluated in a hybrid vehicle simulation program. The battery designs were based on laboratory tests of 18650 cells for which a Lumped Parameter Battery Model was employed to correlate the cell impedance data. The three battery designs were each tested on three driving cycles, the Federal Urban Driving Schedule, the Highway Fuel Economy Test, and a special cycle developed to test the full power of the vehicle. The results of these simulation tests showed that the battery impedances were low for much of the time because the discharging and charging currents are not maintained at high levels for long periods of time on these cycles. For these conditions, the rates of heat generation in the batteries that were calculated by the simulation programs were low and may not be a serious problem.
Technical Paper
Michael Marlatt, David Weiss, John N. Hryn
Preliminary work was conducted in the casting of magnesium using the lost foam casting process. The lost foam or expendable pattern casting (EPC) process is capable of making extremely complicated part shapes at acceptable soundness levels and with low manufacturing costs. Standard test shapes were used to determine the ability of the magnesium to fill the mold and to assess the types of defects encountered. This paper will briefly explain how this project evolved including the developmental strategies formed, the products selected, the casting trials performed, and the casting results.
Technical Paper
D. K. Mather, David E. Foster, R. B. Poola, D. E. Longman, A. Chanda, T. J. Vachon
Abstract A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NOx emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NOx emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NOx through controlled enhancement of in-cylinder mixing.
Technical Paper
R. R. Sekar, W. W. Murr, J. E. Schaus, R. L. Cole, T. J. Marcihiak, J. N. Eustis
Analytical studies of oxygen-enriched diesel engine combustion have indicated the various benefits as well as the need for using cheaper fuels with water addition. To verify analytical results, a series of single-cylinder diesel engine tests were conducted to investigate the concepts of oxygen enriched air (OEA) for combustion with water emulsified fuels. Cylinder pressure traces were obtained for inlet oxygen levels of 21% to 35% and fuel emulsions with water contents of 0% to 20%. Data for emulsified fuels included no. 2 and no. 4 diesel fuels. The excess oxygen for the tests was supplied from compressed bottled oxygen connected to the intake manifold. The cylinder pressure data was collected with an AVL pressure transducer and a personal computer-based data logging system. The crank angle was measured with an optical encoder. In each data run, 30 consecutive cycles were recorded and later averaged for analysis.
Technical Paper
Frank Stodolsky
Safety issues and current transport (shipment and b-vehicle use) and environmental regulations applicable to sodium-sulfur batteries for electric vehicles are summarized, and an assessment technique is suggested for evaluating potential hazards relative to commonly accepted risks. It is found that shipment regulations do not directly apply to sodium-sulfur batteries. Disposal hazards need to be quantified and decommissioning procedures need to be developed to comply with the environmental regulations. The risk assessment could be used to help commercialize sodium-sulfur and other advanced batteries in electric vehicles.
Technical Paper
Patrick V. Bonsignore, Bassam J. Jody, Edward Daniels
Disposal of automobile shredder residue (ASR), remaining from the reclamation of steel from junked automobiles, promises to be an increasing environmental and economic concern. Argonne National Laboratory (ANL) is investigating alternative technology for recovering value from ASR while also, it is hoped, lessening landfill disposal concerns. Of the ASR total, some 20% by weight consists of plastics. Preliminary work at ANL is being directed toward developing a protocol, both mechanical and chemical (solvent dissolution), to separate and recover polyurethane foam and the major thermoplastic fraction from ASR. Feasibility has been demonstrated in laboratory-size equipment.
3-D catalytic activity of new open-frame nanoparticles is twenty times that of existing formulations.
Argonne National Laboratory licensed a patented layered/layered composite cathode material to GM and Korean battery supplier LG Chem for development of next-generation Li-ion battery cells for electrified vehicles. The technology can extend a battery’s energy density by a factor of two.
Powertrain system engineers know that of the energy consumed in transportation, 10% to 15% is lost due to parasitics in engines and drivelines. Researchers at Argonne National Laboratory have developed a new breed of nanocomposite coatings, which are made of the nitrides of transition metals and metal catalysts.
Los Alamos researchers demonstrate catalysts with good performance and promising durability.
Viewing 1 to 30 of 33


  • Range:
  • Year: