Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 46
2014-04-01
Technical Paper
2014-01-0642
Kristian Haehndel, Angus Pere, Torsten Frank, Frieder Christel, Sylvester Abanteriba
Abstract As computational methodologies become more integrated into industrial vehicle pre-development processes the potential for high transient vehicle thermal simulations is evident. This can also been seen in conjunction with the strong rise in computing power, which ultimately has supported many automotive manufactures in attempting non-steady simulation conditions. The following investigation aims at exploring an efficient means of utilizing the new rise in computing resources by resolving high time-dependent boundary conditions through a series of averaging methodologies. Through understanding the sensitivities associated with dynamic component temperature changes, optimised boundary conditions can be implemented to dampen irrelevant input frequencies whilst maintaining thermally critical velocity gradients.
2014-04-01
Technical Paper
2014-01-0646
Kristian Haehndel, Anthony Jefferies, Markus Schlipf, Torsten Frank, Frieder Christel, Sylvester Abanteriba
Abstract At the rear of the vehicle an end acoustic silencer is attached to the exhaust system. This is primarily to reduce noise emissions for the benefit of passengers and bystanders. Due to the location of the end acoustic silencer conventional thermal protection methods (heat shields) through experimental means can not only be difficult to incorporate but also can be an inefficient and costly experience. Hence simulation methods may improve the development process by introducing methods of optimization in early phase vehicle design. A previous publication (Part 1) described a methodology of improving the surface temperatures prediction of general exhaust configurations. It was found in this initial study that simulation results for silencer configurations exhibited significant discrepancies in comparison to experimental data.
2006-04-03
Technical Paper
2006-01-0541
Sebastian Thalmair, Jan Thiele, Andreas Fischersworring-Bunk, Robert Ehart, Melaine Guillou
Increasing demands on engine efficiency and specific power have resulted in progressively higher loadings on internal components of combustion engines. Therefore the durability assessment of such components is increasingly in demand, triggered by both reliability and economic requirements. Within this context the TMF cylinder head simulation process established at BMW is presented in the following article. The numerical model is able to account for thermo-mechanical loading histories. These lead to a transient evolution of the material characteristics during the lifetime due to aging in aluminum alloys. Therefore a viscoplastic constitutive model is coupled with an aging model to handle the change in precipitation structure and the effect on the material properties, especially for non heat-treated secondary aluminum alloys. The local damage evolution is modeled based on the growth of micro cracks.
2006-04-03
Technical Paper
2006-01-0315
Viorel Ionescu, Philipp Wernicke
In order to protect occupants from the risk of serious injury in event of side impact, passenger vehicles are designed to fulfil specific legislative and consumer impact test requirements. These are generally different for each of the major markets of the world. The tests use different configurations and percentile dummies (anthropomorphic test devices). Aside from the problem of finding an optimal design, the reliable evaluation of the robustness, i.e. the sensitivity of unavoidable scatter of design variables due to the structural response, is becoming increasingly important. For this purpose simulation is a well established tool in the development process in the automotive industry. The integration of FE-dummies and restraint systems in side impact simulations enables the study of the effect of dummy loading. ABAQUS/Explicit is a promising new software package for gaining more accuracy in crashworthiness and occupant protection simulations.
2006-04-03
Technical Paper
2006-01-0070
Per Bakke, Andreas Fischersworring-Bunk, Isabelle de Lima, Hans Lilholt, Ingemar Bertilsson, Fethi Abdulwahab, Pierre Labelle
A specific objective of the European Mg-Engine project is to qualify at least two die cast Mg alloys with improved high temperature properties, in addition to satisfactory corrosion resistance, castability and costs. This paper discusses the selection criteria for high temperature alloys leading to four candidate alloys, AJ52A, AJ62A, AE44 and AE35. Tensile-, creep- and fatigue testing of standard die cast test specimens at different temperatures and conditions have led to a very large amount of material property data. Numerous examples are given to underline the potential for these alloys in high temperature automotive applications. The subsequent use of the basic property data in material models for design of automotive components is illustrated.
2013-11-20
Journal Article
2013-01-9121
Kristian Haehndel, Torsten Frank, Frieder Christel, Sylvester Abanteriba
Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
2013-04-08
Journal Article
2013-01-0879
Kristian Haehndel, Torsten Frank, Frieder Martin Christel, Carsten Spengler, Gerrit Suck, Sylvester Abanteriba
The thermal prediction of a vehicle under-body environment is of high importance in the design, optimization and management of vehicle power systems. Within the pre-development phase of a vehicle's production process, it is important to understand and determine regions of high thermally induced stress within critical under-body components. Therefore allowing engineers to modify the design or alter component material characteristics before the manufacture of hardware. As the exhaust system is one of the primary heat sources in a vehicle's under-body environment, it is vital to predict the thermal fluctuation of surface temperatures along corresponding exhaust components in order to achieve the correct thermal representation of the overall under-body heat transfer. This paper explores a new method for achieving higher accuracy exhaust surface temperature predictions.
2013-05-13
Journal Article
2013-01-1932
Robert Powell, Philippe Moron, Ganapathy Balasubramanian, Barbara Neuhierl, Sivapalan Senthooran, Bernd Crouse, David Freed, Cornelia Kain, Frank Ullrich
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
2013-05-13
Technical Paper
2013-01-1997
Jan Rejlek, Giorgio Veronesi, Christopher Albert, Eugene Nijman, Arnaud Bocquillet
Over the past 30 years, the computer-aided engineering (CAE) tools have been applied extensively in the automotive industry. In order to accelerate time-to-market while coping with legal limits that have become increasingly restrictive over the last decades, CAE has become an indispensable tool covering all major fields in a modern automotive product design process. However, when tackling complex real-life engineering problems, the computational models might become rather involved and thus less efficient. Therefore, the overall trend in the automotive industry is currently heading towards combined approaches, which allow the best of the both worlds, namely the experimental measurement and numerical simulation, to be merged into one integrated scheme. In this paper, the so-called patch transfer function (PTF) approach is adopted to solve coupled vibro-acoustic problems. In the PTF scheme, the interfaces between fluid and structure are discretised in terms of patches.
2011-04-12
Technical Paper
2011-01-0177
Pascal Theissen, Johannes Wojciak, Kirstin Heuler, Rainer Demuth, Thomas Indinger, Nikolaus Adams
Unsteady aerodynamic flow phenomena are investigated in the wind tunnel by oscillating a realistic 50% scale model around its vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi-steady loads. In particular, the unsteady yaw moment exceeds the quasi-steady approximation by 80%. On the other hand, side force and roll moment are over predicted by quasi-steady approximation but exhibit a significant time delay. Using hotwire anemometry, a delayed reaction of the wake flow of Δt/T = 0.15 is observed, which is thought to be the principal cause for the differences between unsteady and quasi-steady aerodynamic loads. A schematic mechanism explaining these differences due to the delayed reaction of the wake flow is proposed.
2010-11-03
Technical Paper
2010-22-0006
Thomas Helmer, Adrian Ebner, Randa Radwan Samaha, Paul Scullion, Ronald Kates
Evaluation of safety benefits is an essential task during design and development of pedestrian protection systems. Comparative evaluation of different safety concepts is facilitated by a common metric taking into account the expected human benefits. Translation of physical characteristics of a collision, such as impact speed, into human benefits requires reliable and preferably evidence-based injury models. To this end, the dependence of injury severity of body regions on explanatory factors is quantified here using the US Pedestrian Crash Data Study (PCDS) for pedestrians in frontal vehicle collisions. The explanatory and causal factors include vehicle component characteristics, physiological and biomechanical variables, and crash parameters. Severe to serious injuries most often involve the head, thorax and lower extremities.
2009-05-19
Technical Paper
2009-01-2203
Philippe Moron, Robert Powell, Dave Freed, Franck Perot, Bernd Crouse, Barbara Neuhierl, Frank Ullrich, Michael Höll, Artur Waibl, Cornelia Fertl
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (> 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. The goal of this paper is to present a computational approach developed to predict the greenhouse windnoise contribution to the interior noise heard by the vehicle passengers. This method is based on coupling an unsteady Computational Fluid Dynamics (CFD) solver for the windnoise excitation to a Statistical Energy Analysis (SEA) solver for the structural acoustic behavior.
2013-04-08
Technical Paper
2013-01-0201
Markus Schratter, Michael Karner, Peter Wimmer, Daniel Watzenig, Christian Gruber
With the huge improvements made during the last years in the area of integrated safety systems, they are one of the main contributors to the massively rising complexity within automotive systems. However, this enormous complexity stimulates the demand for methodologies supporting the efficient development of such systems, both in terms of cost and development time. Within this work, we propose a co-simulation-based approach for the validation of integrated safety systems. Based on data measurements gained from a test bed, models for the sensors and the distributed safety system are established. They are integrated into a co-simulation environment containing models of the ambience, driving dynamics, and the crash-behavior of the vehicle. Hence, the complete heterogeneous system including all relevant effects and dependencies is modeled within the co-simulation.
2012-04-16
Technical Paper
2012-01-0297
Satheesh Kandasamy, Bradley Duncan, Holger Gau, Fabien Maroy, Alain Belanger, Norbert Gruen, Sebastian Schäufele
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
2006-04-03
Technical Paper
2006-01-1286
Alexandre Saad, Werner Bauer, Michael Haneberg, Jutta Schiffers
The paper will introduce the concept of intelligent automotive system services as an essential pattern for forthcoming Electric/Electronic (E/E) architectures. System services are infrastructure-related, having vehicle-wide functionalities with one central part (master) and optionally several peripheral parts (clients) as counterparts in every ECU. System services support the reliable operation, efficient administration and maintenance of car functions over the entire life cycle. System services constitute vehicle-wide, distributed functionalities. Therefore, a consistent, interoperable and scalable implementation and integration strategy is outlined. In addition, synergies to the standard core as well as to the AUTOSAR concept will be described.
2006-04-03
Technical Paper
2006-01-1275
Sven A. Beiker, Karl Heinz Gaubatz, J. Christian Gerdes, Kirstin L. Rock
Measurements from a Global Navigation System in conjunction with an Inertial Measurement Unit were recently introduced in different aerial and ground vehicles as an input to control vehicle dynamics. In automobiles this approach could help to further improve braking and / or stability control systems as information like velocity over ground and side slip angle becomes available. This paper presents the technical background, validation through test results and the evaluation of potential benefits of such an “INS/GPS” setup. As a result of the extended measuring capabilities a reduction in braking distance and a more effective stability control becomes possible. The results show an excellent performance that should be exploited in future automotive applications.
2006-07-04
Technical Paper
2006-01-2313
Christian Mergl, Heiner Bubb, Christian Vogt, Holger Kress
During early phases of interior car layout a lot of different aspects have to be considered like crashworthiness, regulations, philosophy of the company etc.. Ergonomic aspects do not always play the most important role in these cases. Since aspects of comfort in cars are getting more and more important in nowadays these aspects should be taken into account very early in the interior car layout process. This paper shows a way to design the interior layout of a car from scratch for a good postural comfort for all anthropometries with the aid of a digital human model (RAMSIS). The novelty of this approach is to use the digital human model to design the interior and not to verify or correct an existing one.
2006-04-03
Technical Paper
2006-01-1219
Philip Koehn, Michael Eckrich, Hendrikus Smakman, Arnd Schaffert
This paper is supposed to address the BMW approach to the challenge of integrating chassis control systems and it highlights the major issues that have to be addressed. It points out possible solutions for scalable functional and hardware configurations for variable chassis control system combinations. A short outlook is given at possible functional benefits of an integrated structure. Finally, aspects such as components costs (e. g. for sensors and ECUs) as well as reactions on system failures and degradability have to be looked at.
2006-04-03
Technical Paper
2006-01-1450
Klaas Kunze, Stefan Wolff, Irina Lade, Johann Tonhauser
A transient 1D-network simulation model of the relevant power train components and fluid circuits of a state-of-the art passenger car has been developed, including engine, gearbox, coolant, motor oil and gearbox oil circuit. A system analysis was conducted to identify the subsystems of the vehicle where thermal intervention was expected to have major influence on fuel consumption during warm-up. Variable heat flows have been applied to those subsystems in the simulation model and their influence on the NEDC fuel consumption has been evaluated. The results show the potential fuel reduction effects of heat management measures on the respective system components with a special emphasis on the component interaction. A sensitivity study of variable heat distribution among the subsystems of the vehicle shows the optimization potentials of heat management measures. The results from the numerical simulation have been validated in an experimental setup.
2006-07-04
Technical Paper
2006-01-2358
Alexander Cherednichenko, Ernst Assmann, Heiner Bubb
A comprehensive experimental study was conducted to investigate human movements when entering a vehicle. The primary goal of this study was to understand the influence of environmental changes on entry motions selected by a driver to enter a vehicle. The adjustable hardware setup “VEMO” (Variable Entry Mockup) was used for the experiments. With VEMO it is possible to simulate different types and classes of vehicle configurations. Around 30 test persons of different anthropometry participated in the experiments. The visual measurement system VICON was used for motion capturing, motion data cleaning and biomechanical analysis. The results corroborate the theory of leading body parts (LBPs) i.e. body parts that control targeted movement of the entire body. It could be demonstrated how motion patterns of LBPs, including spatial and dynamic characteristics such as orientation and velocity, respond to modifications of the geometrical environment.
2006-12-05
Technical Paper
2006-01-3623
Amir A. Hashmi, Ioannis Dimitriou
Knowing the wheel forces on a vehicle under various circumstances and configurations is essential for its aerodynamic development. This becomes crucial when dealing with a racing car. This was the driving force for the initial research conducted in the BMW Aerodynamics Department [1] concerning the aerodynamic forces of an isolated 1:2 racing wheel. The latter were determined for various arrangements with the use of a system equipped with pressure transducers distributed on the wheel surface. While the pressure wheel is adequate for revealing flow structures surrounding it as well as highlighting its physics, it is nevertheless insufficient for the prediction of the wheel forces with high accuracy. As will be shown, this is mainly the consequence of the absent contribution of skin friction, the mathematical method engaged in post–processing and the restricted number of pressure transducers.
2007-04-16
Technical Paper
2007-01-0346
Raphael Zenk, Christian Mergl, Jürgen Hartung, Heiner Bubb
For car manufacturers, seating comfort is becoming more and more important in distinguishing themselves from their competitors. There is a simultaneous demand for shorter development times and more comfortable seats. Comfort in automobile seats is a multi-dimensional and complex problem. Many current sophisticated measuring tools were consulted, but it is unclear on which factors one should concentrate attention when measuring comfort. The goal of this paper is to find a model in order to predict the overall seating discomfort based on body area ratings. Besides micro climate, the pressure distribution appears to be the most objective measure comprising with the clearest association with the subjective ratings. Therefore an analysis with three different test series was designed, allowing the variation of pressure on the seat surface. In parallel the subjects were asked to judge the local and the overall sensation.
2004-10-18
Technical Paper
2004-21-0025
Günter Reichart, Michael Haneberg
2004-10-18
Technical Paper
2004-21-0065
Hans Hohenner, Frank Kessler, Friedrich Munk
The dramatic increase in data and information exchange has lead to increased communication network complexity within the subsystems of the powertrain itself as well as in all other subsystems of the vehicle. It is essential to manage this complexity during the development process. Applying new processes and methods such as vehicle functions and systems orientation in a top-down structural approach creates a powerful support in development of innovative powertrains. Several technical integration examples of powertrain functions are illustrated for the purpose of demonstrating customer-related advantages. Vehicle functions and systems orientation also has significant impact on organisational structures and cooperation methods to achieve maximum synergies as well as efficient vehicle communication architectures.
2003-06-17
Technical Paper
2003-01-2194
Stefan Rigel, Ernst Assmann, Heiner Bubb
Cutting development times in car manufacturing means bringing forward the knowledge processes. Simulations based directly on CAD data reduce or replace time-consuming hardware loops significantly and therefore make a significant contribution to this. Ergonomic product design is an area that is challenged as far as the further development of virtual methods is concerned. Simulation of the static and quasi-static positions of passengers inside the car is the current state of the art in ergonomic product design. For this reason, interest is strongly focused on the simulation of complex movement processes within the context of enhancing simulation tools. For the car manufacturer, the manner in which people enter and leave the car is of particular interest. Getting into the car is the customers' first actual contact with it. It may also develop into a serious problem for car drivers, as they get older.
2008-04-14
Technical Paper
2008-01-1127
Eberhard Michael Kreppold, Doris Ruckdeschel, Ferdinand Dirschmid
The trend in the previous years showed that an ideal product is not obtained as a sum of development results of several separated disciplines but rather as a result of a holistic multidisciplinary CAE approach. In the course of the whole component development process it is necessary to consider all functions of an individual component equivalent to their importance in the system as a whole, in order to achieve both a technical and a financial optimum. The predictability and the accuracy of an individual computational method have to be regarded against the background of the entire simulation process. A continuative CAE-standard and a harmonious interaction between the different computational disciplines promise more success than focusing specifically on individual topics and thereby neglecting the “bigger picture”. This awareness provided the basis for a decision to change the entire crash simulation software to ABAQUS.
2008-04-14
Technical Paper
2008-01-0200
Francis Dance, Damon Gawley, Robert Hein, Ronald Kates
As the popularity of vehicle navigation systems rises, incorporating Real Time Traffic Information (RTTI) has been shown to enhance the systems' value by helping drivers avoid traffic delays. As an innovative premium automaker, BMW has developed a testing process to acquire and analyze RTTI data in order to ensure delivery of a high quality service and to enhance the customer experience compared to audible broadcast services. With a methodology to obtain valid and repeatable RTTI data quality measurements, BMW and its service partner, Clear Channel's Total Traffic Network (TTN), can improve its offered service over time, implement corrective measures when appropriate, and confidently ensure the service meets its premium objectives. BMW has partnered with TTN and SoftSolutions GmbH to implement a traffic data quality process and software tools.
2007-05-15
Technical Paper
2007-01-2400
Bernd Crouse, David Freed, Siva Senthooran, Frank Ullrich, Cornelia Fertl
A computational analysis of underbody windnoise sources on a production automobile at 180 km/h free stream air speed and 0° yaw is presented. Two different underbody geometry configurations were considered for this study. The numerical results have been obtained using the commercial software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice-Boltzmann Method (LBM), combined with a two-equation RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of turbulent flows over complex detailed geometries, including the pressure fluctuations causing wind noise. Comparison of pressure fluctuations levels mapped on a fluid plane below the underbody shows very good correlation between experiment and simulation. Detailed flow analysis was done for both configurations to obtain insight into the transient nature of the flow field in the underbody region.
2008-06-17
Journal Article
2008-01-1861
Christian Amann, André Huschenbeth, Raphael Zenk, Nicole Montmayeur, Christian Marca, Carole Michel
This paper presents an integrated simulation process which has been performed in order to assess the riding comfort performance of a vehicle seat system virtually. Present methods of seat comfort design rely on the extensive testing of numerous hardware prototypes. In order to overcome the limitations of this expensive and time-consuming process, and to fasten innovation, simulation-based design has to be used to predict the seat comfort performance very early in the seat design process, leading to a drastic reduction in the number of physical prototypes. The accurate prediction of the seat transfer function by numerical simulation requires a complete simulation chain, which takes into account the successive stages determining the final seat behaviour when submitted to vibrations. First the manufacturing stresses inside the cushion, resulting from the trimming process, are computed.
2008-06-17
Technical Paper
2008-01-1901
Domingo Rodriguez Flick, Heiner Bubb
Today digital 3D human models are widely used to support the development of future products and in planning and designing production systems. However, these virtual models are generally not sufficiently intuitive and configuring accurate and real body postures is very time consuming. Furthermore, additionally using a human model to virtually examine manual assembly operations of a vehicle is currently synonymous with increased user inputs. In most cases, the user is required to have in-depth expertise in the deployed simulation system. In view of the problems described, in terms of human-computer interaction, it is essential to research and identify the requirements for simulation with digital human models. To this end, experienced staff members gathered the requirements which were then evaluated and weighted by the potential user community. Weaknesses of the simulation software will also be detected, permitting optimisation recommendations to be identified.
Viewing 1 to 30 of 46

Filter

  • Range:
    to:
  • Year: