Refine Your Search

Topic

Author

Affiliation

Search Results

Video

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-11-17
The presentation describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The presentation illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Video

BMW i3 - A Battery Electric Vehicle...Right from the Beginning

2012-03-29
What are the requirements of customers in an urban environment? What will sustainable mobility look like in the future? This presentation gives an overview of the integrated approach used by BMW to develop the BMW i3 - a purpose-built battery electric vehicle. Very low driving resistances for such a vehicle concept enable the delivery of both impressive range and driving excitement. A small optional auxiliary power unit offers range security for unexpected situations and opens up BEVs to customers who are willing to buy a BEV but are still hesitant due to range anxiety. Additional electric vehicles sold to the formerly range anxious will create additional electric miles. Presenter Franz Storkenmaier, BMW Group
Journal Article

A New Approach to Analyzing Cooling and Interference Drag

2010-04-12
2010-01-0286
This paper presents a new approach to analyzing and developing low-drag cooling systems. A relation is derived which describes cooling drag by a number of contributions. Interference drag clearly can be identified as one of them. Cooling system parameters can be assigned to different terms of the relation, so that differences due to parameter variations of the individual drag contributions can be estimated. In order to predict the interference-drag dependency on the outlet location and the local outlet mass flow, an extensive study on a standard BMW sedan has been carried out, both experimentally and by CFD. The results show the importance of providing consistent outflow conditions which take into account the outlet location and flow direction, in order to minimize cooling drag.
Journal Article

Issues Exporting a Multibody Dynamics System Model into a Finite Element Analysis Model

2010-04-12
2010-01-0947
Nowadays there is an increasing need to streamline CAE processes. One such process consists of translating a Multibody Dynamics System (MBS) model into an equivalent Finite Element Analysis (FEA) model. Typically, users start with the creation of a MBS model which is set at a desired operating point by means of running simulations in the MBS domain (e.g. dynamics, statics.) The MBS model is then further translated into an equivalent FEA model which is used to perform simulations in the FEA domain (e.g. passive safety/crash, noise vibration harshness/NVH.) Currently, the translation of the MBS model into a FEA model is done either manually or by means of using a user-written script. This paper shows that a user-written script that translates a MBS model into a FEA model can not provide a high fidelity translation. In general, it is found that eigenvalues computed by the FEA code would not match eigenvalues computed by the MBS code.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Journal Article

An Innovative Approach to Race Track Simulations for Vehicle Thermal Management

2013-11-20
2013-01-9121
Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
Journal Article

Adapted Development Process for Security in Networked Automotive Systems

2014-04-01
2014-01-0334
Future automotive systems will be connected with other vehicles and information systems for improved road safety, mobility and comfort. This new connectivity establishes data and command channels between the internal automotive system and arbitrary external entities. One significant issue of this paradigm shift is that formerly closed automotive systems now become open systems that can be maliciously influenced through their communication interfaces. This introduces a new class of security challenges for automotive design. It also indirectly impacts the safety mechanisms that rely on a closed-world assumption for the vehicle. We present a new security analysis approach that helps to identify and prioritize security issues in automotive architectures. The methodology incorporates a new threat classification for data flows in connected vehicle systems.
Journal Article

Experimental and Numerical Study of Heat Transfer at the Underbody of a Production Car

2014-04-01
2014-01-0582
The optimization of the flow field around new vehicle concepts is driven by aerodynamic and thermal demands. Even though aerodynamics and thermodynamics interact, the corresponding design processes are still decoupled. Objective of this study is to include a thermal model into the aerodynamic design process. Thus, thermal concepts can be evaluated at a considerably earlier design stage of new vehicles, resulting in earlier market entry. In a first step, an incompressible CFD code is extended with a passive scalar transport equation for temperature. The next step also accounts for buoyancy effects. The simulated development of the thermal boundary layer is validated on a hot flat plate without pressure gradient. Subsequently, the solvers are validated for a heated block with ground clearance: The flow pattern in the wake and integral heat transfer coefficients are compared to wind tunnel simulations. The main section of this report covers the validation on a full-scale production car.
Journal Article

The Development of Turbine Volute Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations: Part 3: Exhaust Radial Turbine Volute Systems

2014-04-01
2014-01-0648
Modern exhaust systems contain not only a piping network to transport hot gas from the engine to the atmosphere, but also functional components such as the catalytic converter and turbocharger. The turbocharger is common place in the automotive industry due to their capability to increase the specific power output of reciprocating engines. As the exhaust system is a main heat source for the under body of the vehicle and the turbocharger is located within the engine bay, it is imperative that accurate surface temperatures are achieved. A study by K. Haehndel [1] implemented a 1D fluid stream as a replacement to solving 3D fluid dynamics of the internal exhaust flow. To incorporate the 3D effects of internal fluid flow, augmented Nusselt correlations were used to produce heat transfer coefficients. It was found that the developed correlations for the exhaust system did not adequately represent the heat transfer of the turbocharger.
Journal Article

Maneuver-Based Analysis of Starting-Systems and Starting-Strategies for the Internal Combustion Engine in Full Hybrid Electric Vehicles

2014-10-13
2014-01-2901
The requirement of the start of the internal combustion engine (ICE) not only at vehicle standstill is new for full hybrid electric vehicles in comparison to conventional vehicles. However, the customer will not accept any deterioration with respect to dynamics and comfort. ICE-starting-systems and -strategies have to be designed to meet those demands. Within this research, a method was developed which allows a reproducible maneuver-based analysis of ICE-starts. In the first step, a maneuver catalogue including a customer-oriented maneuver program with appropriate analysis criteria was defined. Afterwards, the maneuvers were implemented and verified in a special test bench environment. Based on the method, two sample hybrid vehicles were benchmarked according to the maneuver catalogue. The benchmarking results demonstrate important dependencies between the criteria-based assessment of ICE-starts and the embedded ICE-starting-system and -strategy.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Simulating and Optimizing the Dynamic Chassis Forces of the Audi E-Tron

2020-09-30
2020-01-1521
With battery electric vehicles (BEV), due to the absence of the combustion process, the rolling noise comes even more into play. The BEV technology also leads to different concepts of how to mount the electric engine in the car. Commonly, also applied with the Audi e-tron, the rear engine is mounted on a subframe, which again is connected to the body structure. This concept leads to a better insulation in the high frequency range, yet it bears some problems in designing the mounts for ride comfort (up to 20Hz) or body boom (up to 70Hz). Commonly engine mounts are laid-out based on driving dynamics and driving comfort (up to 20Hz). The current paper presents a new method to find an optimal mount design (concerning the stiffness) in order to reduce the dynamic chassis forces which are transferred to the body (>20Hz). This directly comes along with a reduction of the sound pressure level for the ‘body boom’ phenomena.
Technical Paper

Using Statistical Energy Analysis to Optimize Sound Package for Realistic Load Cases

2020-09-30
2020-01-1525
The statistical energy analysis (SEA) is widely used to support the development of the sound package of cars. This paper will present the preparation of a model designed to investigate the sound package of the new Audi A3 and associated correlation against measurements. Special care was given during the creation of the model on the representation of the structure to enable the analysis of structure borne energy flow on top of the classical airborne analysis usually done with SEA. The sound package was also detailed in the model to allow further optimization and analysis of its performance. Two real life load cases will be presented to validate the model with measurements. First, the dominating powertrain and a second load case with dominating rolling noise. An analysis of the contribution of the different source components and a way to diagnose the weak paths of the vehicle will be presented. The focus of this investigation is the application of optimally adjusted treatment.
Technical Paper

Inverse Characterization of Vibro-Acoustic Subsystems for Impedance-Based Substructuring Approaches

2020-09-30
2020-01-1582
Substructuring approaches are helpful methods to solve and understand vibro-acoustic problems involving systems as complex as a vehicle. In that case, the whole system is split into smaller, simpler to solve, subsystems. Substructuring approaches allow mixing different modeling “solvers” (closed form solutions, numerical simulations or experiments). This permits to reach higher frequencies or to solve bigger systems. Finally, one of the most interesting features of substructuring approaches is the possibility to combine numerical and experimental descriptions of subsystems. The latter point is particularly interesting when dealing with subdomains that remain difficult to model with numerical tools (assembly, trim, sandwich panels, porous materials, etc.). The Patch Transfer Functions (PTF) method is one of these substructuring approaches. It condenses information (impedance matrix) of subsystems on their coupling surfaces.
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Journal Article

Optimization of Lateral Vehicle Dynamics by Targeted Dimensioning of the Rim Width

2015-12-01
2015-01-9114
The aim of this investigation is the improvement of the lateral vehicle dynamics by optimizing the rim width. For that purpose, the rim width is considered as a development tool and configured with regard to specified targets. Using a specifically developed method of simulation, the influence of the rim width is analysed within different levels - starting at the component level “tyre” and going up to the level of the whole vehicle. With the help of substantial simulations using a nonlinear two-track model, the dimensioning of the rim width is brought to an optimum. Based on both, tyre and vehicle measurements, the theoretical studies can be proved in practice. As a result, the rim width has a strong influence on the behaviour of the tyre as well as on the overall vehicle performance, which emphasises its importance as a potential development tool within the development of a chassis.
Journal Article

Fast Crank-Angle Based 0D Simulation of Combustion Engine Cold Tests including Manufacturing Faults and Production Spread

2016-04-05
2016-01-1374
During series production of modern combustion engines a major challenge is to ensure the correct operation of every engine part. A common method is to test engines in end-of-line (EOL) cold test stations, where the engines are not fired but tugged by an electric motor. In this work we present a physically based 0D model for dynamic simulation of combustion engines under EOL test conditions. Our goals are the analysis of manufacturing faults regarding their detectability and the enhancement of test procedures under varying environmental conditions. Physical experiments are prohibitive in production environments, and the simulative approach reduces them to a minimum. This model is the first known to the authors exploring advanced engine test methods under production conditions. The model supports a wide range of manufacturing faults (with adjustable magnitude) as well as error-free production spread in engine components.
Journal Article

Brake Particle Emission Measurements - Testing Method and Results

2017-03-28
2017-01-0996
Brake Particle Emission (BPE) is gaining considerable importance for the friction brake and automotive industry. So far no common approach or legislation for BPE characterization exists although many activities in this field have been started during the last years. Taking this into account, the authors carried out a joint measurement campaign to investigate a new approach regarding the sampling location using a brake dynamometer. During preliminary investigations the influence of the cooling air quality has been examined and a sampling point position validation has been carried out. At first the stabilization behavior for repeated test cycles and variations of volumetric air flow rates are analyzed. As a next step the role of volatile particle emissions is determined. Subsequently, the influence of load history and friction power is studied. Finally results in terms of the role of high temperature applications are presented.
Technical Paper

Investigations on Headlamp and Car Body Tolerances in Real Life

2020-04-14
2020-01-0635
Good lighting is crucial for safe driving at night. Unfortunately, many parameters are contributing to the final result of the individual tolerances of car body, dynamics and headlamp: the resulting aim. The paper will analyze individual tolerance contributors from car body parameters like load, tire pressure, suspension as well as temperature parameters of chassis and plastic parts. The investigation shows that the headlight aim can fluctuate in a worst case scenario more than ±0.3°.
Technical Paper

Investigation on Safety Improvements by Lighting for Pedestrians and Cyclists

2020-04-14
2020-01-0633
The paper will describe actual investigations on safety improvements by new lighting functions. Especially the new chance of projections on the road surface either by simple reflector technology or by modern signature and pattern projection will be investigated. Different prototype patterns will be checked by a set of new parameters, e.g. reaction time to signals, clear understanding, minimum and optimum visual contrasts. The results show that high contrasts and dynamic effects are most effective.
X