Viewing 1 to 2 of 2
Journal Article
Eric M. Reid, Alan Merkley
The use of portable automated equipment has increased in recent years with the introduction of flex track, crawling robots, and other innovative machine configurations. Portable automation technologies such as these lower infrastructure costs by minimizing factory floor space requirements and foundation expenses. Portable automation permits a higher density of automated equipment to be used adjacent to aircraft during assembly. This equipment also allows concurrent work in close proximity to automated processes, promotes flexibility for changes in rate, build plan, and floor space requirements throughout the life of an airplane program. This flexibility presents challenges that were not encountered with traditional fixed machine drilling centers. The work zone surrounding portable machines is relatively small, requiring additional setup time to relocate and position machines near the airframe.
Technical Paper
Rick Calawa, Gavin Smith
Abstract The decision to replace a successful automated production system at the heart of a high volume aircraft factory does not come easily. A point is reached when upgrades and retrofits are insufficient to meet increasing capacity demands and additional floor space is simply unavailable. The goals of this project were to increase production volume, reduce floor space usage, improve the build process, and smooth factory flow without disrupting today’s manufacturing. Two decades of lessons learned were leveraged along with advancements in the aircraft assembly industry, modern machine control technologies, and maturing safety standards to justify the risk and expense of a ground-up redesign. This paper will describe how an automated wing spar fastening system that has performed well for 20 years is analyzed and ultimately replaced without disturbing the high manufacturing rate of a single aisle commercial aircraft program.
Viewing 1 to 2 of 2