Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Comparison Exercise of Ice Accretion Simulations with 2D and 3D Solvers

2007-09-24
2007-01-3338
There are many different numerical approaches to ice accretion simulation. Little comparison has been made between those approaches to identify the best tool for a given application. This paper presents a comparison exercise between 2D codes (CANICE-BA and LEWICE) and 3D codes (CANICE3D-BA, LEWICE3D and FENSAP-ICE). It also compares the 3D first generation code (panel method with Lagrangian droplet trajectory tracking) CANICE3D-BA to the 3D second generation code (Navier-Stokes with Eulerian droplet tracking) FENSAP-ICE. The paper includes a description of the different methodologies. The first comparison exercise is done using three 2D cases for which experimental ice shapes are available. The second exercise addresses a water collection efficiency over an isolated tail for which experimental data is available. Finally, an ice accretion comparison is presented in a DLR4 wing-body configuration.
Technical Paper

Super-Hydrophobic Coatings as a Part of the Aircraft Ice Protection System

2017-09-19
2017-01-2139
This paper reviews the current knowledge on super-hydrophobic coatings (SHC). Using an ideal super-hydrophobic surface patterned with identical cylindrical flathead posts forming a square network with constant periodicity, models are proposed to explain SHC, wear and ice adherence on SHC. The models demonstrate that SHC based on Cassie-Baxter state improve the bead mobility compared to SHC based on Wenzel state and more suitable for aircraft application. Their erosion resistance can be improved by increasing the post height and the hydrophobic material thickness. Their ice adhesion reduction factor (IARF) is better but SHC based on Cassie-Baxter state have a limitation to reduce ice adherence dependence on the surface pattern and IARF of the hydrophobic material. The bead mobility is calculated from advancing and receding water contact angles (WCA).
Technical Paper

Numerical Study of Iced Swept-Wing Performance Degradation using RANS

2023-06-15
2023-01-1402
This paper studies the level of confidence and applicability of CFD simulations using steady-state Reynolds-Averaged Navier-Stokes (RANS) in predicting aerodynamic performance losses on swept-wings due to contamination with ice accreted in-flight. The wing geometry selected for the study is the 65%-scale Common Research Model (CRM65) main wing, for which NASA Glenn Research Center’s Icing Research Tunnel has generated experimental ice shapes for the inboard, mid-span, and outboard sections. The reproductions at various levels of fidelity from detailed 3D scans of these ice shapes have been used in recent aerodynamic testing at the Office National d’Etudes et Recherches Aérospatiales (ONERA) and Wichita State University (WSU) wind tunnels. The ONERA tests were at higher Reynolds number range in the order of 10 million, while the WSU tests were in the order of 1 million.
Technical Paper

An Eulerian Approach with Mesh Adaptation for Highly Accurate 3D Droplet Dynamics Simulations

2019-06-10
2019-01-2012
Two main approaches are available when studying droplet dynamics for in-flight icing simulations: the Lagrangian approach, in which each droplet trajectory is integrated until it impacts the vehicle under study or when it leaves it behind without impact, and the Eulerian approach, where the droplet dynamics is solved as a continuum. In both cases, the same momentum equations are solved. Each approach has its advantages. In 2D, the Lagrangian approach is easy to code and it is very efficient, particularly when used in combination with a panel method flow solver. However, it is a far less practical approach for 3D simulations, particularly on complex geometries, as it is not an easy task to accurately determine the droplet seeding region without a great number of droplet trajectories, dramatically increasing the computing cost. Converting the impact locations into a water collection distribution is also a complex task, since droplet trajectories in 3D can follow convoluted paths.
X