Refine Your Search

Topic

Search Results

Journal Article

Model-Based Analysis of Cell Balancing of Lithium-ion Batteries for Electric Vehicles

2013-04-08
2013-01-1755
Cell balancing is a key function of battery management system (BMS) that is implemented to maximize the battery's available capacity and service life. The increasing demand of larger and better performance pack has raised the need to investigate the various cell balancing techniques so that the energy of the battery can be fully realized. In this work we develop a phenomenological model in order to quantify the benefits of passive balancing and active balancing. The electrical response of a model pack consisting of serially connected lithium ion cells is simulated with Matlab. The effects of the variance of cell capacity, internal resistance, self-discharge rates, pack configuration and size are studied. The possible optimization rooms for implementing passive and active balancing are suggested.
Journal Article

Modeling of Failure Modes of Gas Metal Arc Welds in Notched Lap-Shear Specimens of HSLA Steel

2014-04-01
2014-01-0784
The failure modes of gas metal arc welds in notched lap-shear specimens of high strength low alloy (HSLA) steel are investigated. Notched lap-shear specimens of gas metal arc welds were first made. Quasi-static test results of the notched lap-shear specimens showed two failure locations for the welds. The specimens cut from coupons with shorter weld lengths failed near the weld root whereas the specimens cut from coupons with longer weld lengths failed near the weld toe. Micro-hardness tests were conducted in order to provide an assessment of the mechanical properties of the base metal, the heat affected zone, and the weld metal. In order to understand the failure modes of these welds, finite element models were developed with the geometric characteristics of the weld metals and heat affected zones designed to match those of the micrographs of the cross sections for the long and short welds.
Journal Article

Compression Ignition 6-Stroke Cycle Investigations

2014-04-01
2014-01-1246
Driven by the desire to implement low-cost, high-efficiency NOx aftertreatment systems, such as Three Way Catalysts (TWC) or Lean NOx Traps (LNT), a novel 6-Stroke engine cycle was explored to determine the feasibility of implementing such a cycle on a compression ignition engine while continuing to deliver fuel efficiency. Fundamental questions regarding the abilities and trade-offs of a 6-stroke engine cycle were investigated for near-stoichiometric and lean operation. Experiments were performed on a single-cylinder 15-liter (equivalent) research engine equipped with flexible valvetrain and fuel injection systems to allow direct comparison between 4-stroke and 6-stroke performance across multiple hardware configurations. 1-D engine simulations with predictive combustion models were used to support, iterate on, and explore the 6-stroke operation in conjunction with the experiments.
Journal Article

Stress Intensity Factor Solutions for Gas Metal Arc Welds in Lap-Shear Specimens

2015-04-14
2015-01-0708
In this paper, mode I and mode II stress intensity factor solutions for gas metal arc welds in single lap-shear specimens are investigated by the analytical stress intensity factor solutions and by finite element analyses. Finite element analyses were carried out in order to obtain the computational stress intensity factor solutions for both realistic and idealized weld geometries. The computational results indicate that the stress intensity factor solutions for the realistic welds are lower than the analytical solutions for the idealized weld geometry. The computational results can be used for the estimation of fatigue lives in a fatigue crack growth model under mixed mode loading conditions for gas metal arc welds.
Journal Article

Electrochemical Modeling of Lithium Plating of Lithium Ion Battery for Hybrid Application

2017-03-28
2017-01-1201
Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means. In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications.
Technical Paper

Probabilistic Analysis of Bimodal State Distributions in SCR Aftertreatment Systems

2020-04-14
2020-01-0355
Sensor selection for the control of modern powertrains is a recognised technical challenge. The key question is which set of sensors is best suited for an effective control strategy? This paper addresses the question through probabilistic modelling and Bayesian analysis. By quantifying uncertainties in the model, the propagation of sensor information throughout the model can be observed. The specific example is an abstract model of the slip behaviour of Selective Catalytic Reduction (SCR) DeNOx aftertreatment systems. Due to the ambiguity of the sensor reading, linearization-based approaches including the Extended Kalman Filter, or the Unscented Kalman Filter are not successful in resolving this problem. The stochastic literature suggests approximating these nonlinear distributions using methods such as Markov Chain Monte Carlo (MCMC), which is able in principle to resolve bimodal or multimodal results.
Technical Paper

Injury Mechanism of the Head and Face of Children in Side Impacts

2009-04-20
2009-01-1434
This study assessed the primary involved physical components attributed to the head and face injuries of child occupants seated directly adjacent to the stuck side of a vehicle in a side impact collision. The findings presented in this study were based upon analysis of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) for the years 1993–2007. Injury analysis was conducted for those nearside child occupants aged between 1–12 years-old. The involved children were classified as toddler-type, booster-type, or belted-type occupants. These classifications were based upon the recommended restraint system for the occupant. Injury mechanisms were assessed for the child occupants in each of the three groups. A detailed study of NASS/CDS cases was conducted to provide a greater understanding of the associated injury mechanisms.
Technical Paper

Tailored Closed Sections for Seat Structures - Effect of Stress Risers

2010-04-12
2010-01-0229
Tailored closed sections were created by Orbital Laser Welding tube sections from round steel tubes with differing thicknesses (1 mm wall joined to a 2 mm wall). The tubes were 38 mm outer diameter and constructed from high strength low alloy (HSLA) steel (E235 +c; 10308 per EN10305-1). The tailored closed sections were subjected to compressive and torsion loading conditions to assess the strength of the Orbital Laser Weld. The Orbital Laser Weld was found to have higher strength than the base materials and the performance of the tailored closed section was limited by the thinner section of tube. Results of this study enable automotive seating structures to be optimized for performance while minimizing mass and cost.
Technical Paper

Pad Mount Alternators: Benefits & Advantages and Specification Proposal

2002-03-04
2002-01-1281
The swivel-type hinge mount specified in SAE J180 has been the standard alternator mounting for many years. However, in the mid-1990's on-highway applications began to experience vibration related failures due to casting excitation. This led to the eventual development of a stationary “pad mount” system in combination with an automatic belt tensioner. This paper will review the system component life and benefits of pad mount, and proposes an industry mounting standard for further application usage.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Integrating Feedback Control Algorithms with the Lithium-Ion Battery Model to Improve the Robustness of Real Time Power Limit Estimation

2017-03-28
2017-01-1206
Power limit estimation of a lithium-ion battery system plays an important balancing role of optimizing the battery design cost, maximizing for power and energy, and protecting the battery from abusive usage to achieve the intended life. The power capability estimation of any given lithium-ion battery system is impacted by the variability of many sources, such as cell and system components resistance, temperature, cell capacity, and real time state of charge and state of health estimation errors. This causes a distribution of power capability among battery packs that are built to the same design specification. We demonstrated that real time power limit estimation can only partially address the system variability due to the errors introduced by itself. Integrating feedback control algorithms with the lithium-ion battery model maximizes the battery power capability, improves the battery robustness to variabilities, and reduces the real time estimation errors.
Technical Paper

Application of the SRM Engine Suite over the Entire Load-Speed Operation of a U.S. EPA Tier 4 Capable IC Engine

2016-04-05
2016-01-0571
Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
Technical Paper

Modularized Simulation Tool to Evaluate Battery Solutions for 12 V Advanced Start Stop Vehicles

2018-04-03
2018-01-0446
The 12 V advanced start stop systems can offer 5-8% fuel economy improvement over a conventional vehicle. Although the fuel economy is not as high as those of mild to full hybrids, its low implementation cost makes it an attractive electrification solutions for vehicles. As a result, the 12 V advanced start stop technology has been evolving fast in recent years. On one hand, battery suppliers are offering a variety of energy storage solutions such as stand-alone lead acid, stand-alone LFP/Graphite, dual batteries of lead acid parallel with NMC/LTO, LMO/LTO, NMC/Graphite, and capacitors, etc. For dual battery solutions, the architecture also varies from passive parallel connection to active switching. On the other hand, OEM are considering to leverage a lot more use out of traditional 12 V SLI (start, light, and ignition) for functions such as power steering, air conditioning, heater, etc.
Technical Paper

Hybrid Electric Vehicle Powertrain Controller Development Using Hardware in the Loop Simulation

2013-04-08
2013-01-0156
It is a time and cost consuming way to physically develop Hybrid Electric Vehicle (HEV) supervisor controller due to the increasing complexity of powertrain system. This study aims to investigate the HEV supervisor controller development process using dSPACE midsize Hardware in the Loop simulation system (HIL) for HEV powertrain control. The prototyping controller was developed on basis of MircoAutoBox II, and an HIL test bench was built on midsize HIL machine for the purpose of verification. The feasibility and capability of HIL were attested by the prototyping control strategy and fault modes simulation. The proposed approach was demonstrated its effectiveness and applicability to HEV supervisor controller development.
Technical Paper

A Simulation Based Comprehensive Performance Evaluation of Cat® C4.4 Current Production Engine with its Split Cycle Clean Combustion Variant using a Validated One-Dimensional Modeling Methodology

2013-09-24
2013-01-2434
This paper uses a one-dimensional (1-D) simulation based approach to compare the steady state and transient performance of a Split Cycle Clean Combustion (SCCC) diesel engine to a similarly sized conventional diesel engine. Caterpillar Inc's one-dimensional modeling tool “Dynasty” is used to convert the simulation model of Caterpillar's current production turbocharged diesel engine Cat® C4.4 (used in their Hydraulic Excavator 316) to operate on the SCCC cycle. Steady state and transient engine performance is compared between the two engine variants. This study is focused only on the performance aspects of engine and relies on the other independently published papers for emissions prediction. This paper also demonstrates the use of Caterpillar's proprietary modeling software Dynasty to replicate the two cylinder SCCC engine model presented by University of Pisa in their paper [2].
Technical Paper

Why You Should Use Web Based Learning for CAD Training in Your Organization

2013-09-24
2013-01-2439
Since 1992, Caterpillar has invested millions of dollars to purchase CAD software, and spends nearly $2M per year keeping its engineers up-to-date, via instructor lead training (ILT), as new enhancements are introduced. Periodic upgrades to the software also require huge resource (people, costs) commitments for the planning and execution of the training requirements required for a large global workforce. This paper will examine gaps uncovered in the efficiency and effectiveness of the current training process, and the cultural change required as a result of switching from an instructor led environment to a completely web-based solution, which, once deployed, had promised to change the way Caterpillar approached training for the future. The proposed change promised to improve human resource capability by utilizing new technological capabilities, and resulted in improvements in organizational capabilities as well.
Technical Paper

Estimation of Occupied Seat Vibration Transfer Functions

2000-03-06
2000-01-0646
Occupied seat vibration transfer functions can be used to gauge the ability of a seat system to isolate an occupant from annoying road vibrations. Automotive interior suppliers measure occupied seat vibration transfer functions (transfer functions with a person in the seat) to determine how seat system designs will affect ride comfort. The wide range of physiological dynamic properties among potential test occupants often contributes to a wide range of transfer function measurements for any seat system. This paper evaluates the performance of two approaches to reduce transfer function measurement variation due to multiple test occupants. Reduction of measurement variation can lead to tighter statistical confidence bands for measurements taken with a given number of test occupants. Alternatively, it can lead to a reduction in the number of test occupants required for measurements to fall within a given confidence band.
Technical Paper

An Assessment of a Sensor Network Using Bayesian Analysis Demonstrated on an Inlet Manifold

2019-04-02
2019-01-0121
Modern control strategies for internal combustion engines use increasingly complex networks of sensors and actuators to measure different physical parameters. Often indirect measurements and estimation of variables, based off sensor data, are used in the closed loop control of the engine and its subsystems. Thus, sensor fusion techniques and virtual instrumentation have become more significant to the control strategy. With the large volumes of data produced by the increasing number of sensors, the analysis of sensor networks has become more important. Understanding the value of the information they contain and how well it is extracted through uncertainty quantification will also become essential to the development of control architecture. This paper proposes a methodology to quantify how valuable a sensor is relative to the architecture. By modelling the sensor network as a Bayesian network, Bayesian analysis and control metrics were used to assess the value of the sensor.
Technical Paper

Comparison of Total Fatigue Life Predictions of Welded and Machined A36 Steel T-Joints

2019-04-02
2019-01-0527
A new total fatigue life methodology was utilized to make fatigue life predictions, where total fatigue life is defined as crack initiation and subsequent crack propagation to a crack of known size or the component’s inability to carry load. Fatigue life predictions of an A36 steel T-joint geometry were calculated using the same total fatigue life methodology for both welded and machined test specimens that have the same geometry. The only significant difference between the two analyses was the inclusion of the measured weld residual stresses in the welded specimen life predictions. Constant amplitude tests at several load levels and R ratios were analyzed along with block cycle and variable amplitude loading tests. The accuracy of the life predictions relative to experimental test lives was excellent, with most within a factor of +/- two.
Technical Paper

Hydraulic Hybrid Excavator System Development and Optimization Based on Energy Flow Analysis and its Performance Results

2015-09-29
2015-01-2851
Many off-highway machines, including hydraulic excavators, perform cyclical motion in their everyday activities where there is significant acceleration, deceleration, load lifting and hydraulic implement lowering. During that time in conventional off-highway machinery, most of the potential or kinetic energy is dissipated as heat instead of being captured and reused. When these opportunities are well understood and consequently machine systems are designed and integrated properly, fuel efficiency improvements could reach double digit values. It should be noted that the mentioned machine efficiency improvements will still vary depending on the machine size, its application and the characteristics of machine system(s) being applied. An approach for excavator energy flow analysis, coupled with rapid machine control design changes directed to minimization of energy losses is discussed.
X