Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 30
2011-04-12
Technical Paper
2011-01-0120
Tim Lutz, Rajani Modiyani
The majority of commercial diesel engines rely on EGR to meet increasingly stringent emissions standards, creating a potential issue for military applications that use JP-8 as a fuel. EGR components would be susceptible to corrosion from sulfur in JP-8, which can reach levels of 3000 ppm. Starting with a Cummins 2007 ISL 8.9L production engine, modifications to remove EGR and operate on JP-8 fuel are investigated with a key goal of demonstrating 48% brake thermal efficiency (BTE) at an emissions level consistent with 1998 EPA standards. The effects of injector cup flow, improved turbo match, increased compression ratio with revised piston bowl geometry, increased cylinder pressure, and revised intake manifold for improved breathing, are all investigated. Testing focused on a single operating point, full load at 1600 RPM. This engine uses a variable geometry turbo and high pressure common rail fuel system, allowing control over air fuel ratio, rail pressure, and start of injection.
2004-03-08
Technical Paper
2004-01-1289
A. P. Walker, P. G. Blakeman, T. Ilkenhans, B. Magnusson, A. C. McDonald, P. Kleijwegt, F. Stunnenberg, M. Sanchez
Selective Catalytic Reduction (SCR) systems will be widely used to meet the Heavy Duty Diesel (HDD) Euro IV emissions legislation. Reports on a number of demonstrations of such systems have already been published, but the long-term durability of such systems is still to be proven. The potential catalyst deactivation induced by oil-derived species and thermal processes have, up to now, received very little attention, despite the fact that these HDD emission control systems will need to be durable for distances of the order of 500,000 km or more. This paper describes the development and performance of a new family of SCR catalyst with very high thermal durability and poison resistance. The thermal durability of the catalyst was initially demonstrated within long-term, high temperature engine bench ageing studies.
2011-09-13
Technical Paper
2011-01-2268
Nagesh Belludi, Joshua Receveur, Jeremy Raymond
This paper presents an extension of our earlier work on Cummins Vehicle Mission Simulation (VMS) software. Previously, we presented VMS as a Windows based analysis tool to simulate vehicle missions quickly and to gauge, communicate, and improve the value proposition of Cummins engines to customers. We have subsequently extended this VMS architecture to build a grid-computing platform to support high volume of simulation needs. The building block of the grid-computing version of VMS is an executable file that consists of vehicle and engine simulation models compiled using Real Time Workshop. This executable file integrates MATLAB and Simulink with Java, XML, and JDBC technologies and interacts with the MySQL database. Our grid consists of a cluster of twenty Linux servers with quad-core processors. The Sun Grid Engine software suite that administers this cluster can batch-queue and execute 80 simulations concurrently.
2015-04-14
Journal Article
2015-01-1063
Yi Liu, Changsheng Su, James Clerc, Arvind Harinath, Leigh Rogoski
Abstract One field-returned DPF loaded with a high amount of ash is examined using experimental and modeling approaches. The ash-related design factors are collected by coupling the inspection results from terahertz spectroscopy with a calibrated DPF model. The obtained ash packing density, ash layer permeability and ash distribution profile are then used in the simulation to assess the ash impact on DPF backpressure and regeneration behaviors. The following features have been observed during the simulation: 1 The ash packing density, ash layer permeability and ash distribution profile should be collected at the same time to ensure the accurate prediction of ash impact on DPF backpressure. Missing one ash property could mislead the measurement of the other two parameters and thus affects the DPF backpressure estimation.2 The ash buildup would gradually increase the frequency for the backpressure-based active soot regeneration.
2005-10-24
Technical Paper
2005-01-3766
Teresa L. Alleman, Christopher J. Tennant, R. Robert Hayes, Matt Miyasato, Adewale Oshinuga, Greg Barton, Marc Rumminger, Vinod Duggal, Christopher Nelson, Mike May, Ralph A. Cherrillo
A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration. The emission control devices included a deNOx filter and a diesel particle filter. Over the transient test, the emissions met the 2007 standards. In July 2004, the modified engine was installed into a Class 8 tractor for use by a grocery fleet. Chassis emission testing of the modified vehicle was conducted at the National Renewable Energy Laboratory's (NREL) Renewable Fuels and Lubricants (ReFUEL) facility. Testing included hot and cold replicate Urban Dynamometer Driving Schedule (UDDS) and New York Composite (NYComp) cycles and several steady-state points. The objective of the testing was to demonstrate the vehicle's with the modified engine.
2007-10-29
Technical Paper
2007-01-4036
Morgan Andreae, Howard Fang, Kirtan Bhandary
In this work fuel dilution of engine oil, and the impact of biodiesel fuel on dilution, were examined. New emissions requirements have driven the adoption of a range of aftertreatment systems for diesel engines. These aftertreatment devices in many cases have specific requirements for exhaust composition and temperature. Meeting these requirements can lead to fuel dilution of the engine oil. Measurement of fuel dilution of engine oil can be challenging, and in this study a new strategy for utilizing Fourier Transform Infrared Spectroscopy (FTIR) was examined. A synthetic component of aviation oil, pentaerythritol ester (PE), was found to be a very useful tracer for measuring dilution with ultra low sulfur diesel (ULSD), but not useful for measuring dilution with B20. Fuel dilution and evaporation rates were measured for both ULSD and for a blend of biodiesel and ULSD (B20).
2009-11-02
Technical Paper
2009-01-2697
Shankar Kumar, Donald W. Stanton, Howard Fang, Rick J. Gustafson, Tim R. Frazier, Bruce G. Bunting, Yi Xu, Leslie R. Wolf
The influence of various diesel fuel properties on the steady state emissions and performance of a Cummins light-duty (ISB) engine modified for single cylinder operation has been studied at the mid-load “cruise” operating condition. Designed experiments involving independent manipulation of both fuel properties and engine control parameters have been used to build statistical engine response models. The models were then applied to optimize for the minimum fuel consumption subject to specific constraints on emissions and mechanical limits and also to estimate the optimum engine control parameter settings and fuel properties. The study reveals that under the high EGR, diffusion-burn dominated conditions encountered during the experiments, NOx is impacted by cetane number and the distillation characteristics. Lower T50 (mid-distillation temperature) resulted in simultaneous reductions in both NOx and smoke, and higher cetane number provided an additional small NOx benefit.
2009-11-02
Journal Article
2009-01-2803
Yolanda Bartoli, Edward J. Lyford-Pike, John E. Lucke, Imad A. Khalek, Michael D. Feist, Robert L. McCormick
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
2009-11-02
Technical Paper
2009-01-2649
Manuch Nikanjam, Jim Rutherford, Douglas Byrne, Edward J. Lyford-Pike, Yolanda Bartoli
Conventional diesel fuel (1) has been on the market for decades and used successfully to run diesel engines of all sizes in many applications.* In order to reduce emissions and to foster energy source diversity, new fuels such as alternative and renewable, as well as new formulations, have entered the market. These include biodiesel, gas-to-liquid, and alternative formulations by states such as California. Performance variations in fuel economy, emissions, and compatibility for these fuels have been evaluated and debated. In some cases, contradictory views have surfaced. “Renewable” and “clean” designations have been interchanged. Adding to the confusion, results from one fuel in one type of engine, such as an older heavy-duty engine, is at times compared to that of another type, such as a modern light-duty engine.
2009-04-20
Journal Article
2009-01-1508
Indranil Brahma, Mike C. Sharp, Tim R. Frazier
Empirical models for engine-out oxides of Nitrogen (NOx) and smoke emissions have been developed for the purpose of minimizing transient emissions while maintaining transient response. Three major issues have been addressed: data acquisition, data processing and modeling method. Real and virtual transient parameters have been identified for acquisition. Accounting for the phase shift between transient engine events and transient emission measurements has been shown to be very important to the quality of model predictions. Several methods have been employed to account for the transient transport delays and sensor lags which constitute the phase shift. Finally several different empirical modeling methods have been used to determine the most suitable modeling method for transient emissions. These modeling methods include several kinds of neural networks, global regression and localized regression.
2009-04-20
Technical Paper
2009-01-0282
Tamas Szailer, Neal Currier, Aleksey Yezerets, Bradlee J. Stroia, Paul Millington, Hai-Ying Chen, Howard S. Hess
The operation of NOx Adsorber catalysts (NAC), also often referred to as Lean NOx Trap catalysts or NOx Storage-reduction catalysts, entails frequent periodic NOx regeneration events. These are accomplished by creating a net reducing, fuel-rich environment in the exhaust. The reduction of hydrocarbon emissions which occur during such fuel-rich events is challenging, due to the oxygen-deficient environment. In order to overcome this limitation, two possibilities exist: (i) oxygen can be stored during lean phase, to be used for hydrocarbon slip oxidation in the subsequent rich phase, or (ii) unreacted hydrocarbons can be trapped during the rich phase and oxidized during the following lean phase. In this work, two groups of catalytic solutions were developed and evaluated for hydrocarbon emission control based on these approaches: an Oxygen Storage Compound (OSC) based catalyst and zeolite-based hydrocarbon trap catalyst.
2009-04-20
Technical Paper
2009-01-0275
Junhui Li, Neal W. Currier, Aleksey Yezerets, Hai-Ying Chen, Howard S. Hess
A novel laboratory methodology has been developed and applied to evaluate performance of NOx Adsorber catalysts, based on the detailed analysis of micro-core samples obtained from various locations in a full-size catalyst. The technique includes a protocol for evaluating various aspects of NOx performance, as well as direct measurements of the amount of sulfur on the catalyst. This method was used to determine the NOx performance and distribution of sulfur loading on several engine aged catalysts. It showed the ability to differentiate poor NOx performance due to insufficient desulfation from that due to thermal degradation. This method further quantifies different forms of sulfur that are present on the catalyst. These forms of sulfur are distinguished by the temperature at which they are removed. In addition, the aspects of sulfur behavior that are important to this technique are discussed.
2009-04-20
Journal Article
2009-01-0189
Kent Clark, John Antonevich, Daniel Kemppainen, Glen Barna
To investigate free floating piston pin behavior in a heavy duty diesel engine, an unused piston-pin-rod joint was instrumented. Combining telemetry systems with inductively powered transducers, piston pin subsurface temperature and pin rotation with respect to the piston were measured over a 30 minute steady state engine test.
2008-04-14
Technical Paper
2008-01-1014
Indranil Brahma, Mike C. Sharp, Tim R. Frazier
A first law based regression model for estimating mean value engine torque on-board a diesel engine is presented. The model uses first law terms across the engine control volume in a regression built from least squares to predict engine torque. Torque information is often required by the engine ECM for torque based control and torque broadcast purposes. In the absence of real-time torque measurement torque estimation is usually achieved through look-up tables or empirical models. Given the increase in engine operating parameters as well as engine operating regimes as a result of emission control and exhaust aftertreatment technologies, accurate torque estimation has become more challenging as well as necessary.
2008-10-07
Journal Article
2008-01-2674
Ilya L. Piraner, Matthew P. Meek
Design of a light duty diesel for an automotive market presents contradictory challenges related to passenger car requirements for a compact, low weight design versus the diesel's base engine that must withstand cylinder pressures that are much greater than that seen on gasoline. This was a particular challenge for Cummins because of two reasons. First, design practices developed for Cummins' traditional heavy duty and industrial markets could lead to over-design, particularly for those items that have wear based life limits like bearings. Secondly, in the pursuit of new engine business it is necessary to be able to quickly yet accurately generate conceptual engine space claims for a variety of vehicle and engine specifications. When applying traditional guidelines for crank and bearing sizing, the resulting base engine size appeared an unsolvable problem relative to size and weight requirements.
2015-04-14
Technical Paper
2015-01-1030
Ashok Kumar, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets
Abstract The high global warming potential of nitrous oxide (N2O) led to its inclusion in the list of regulated greenhouse gas (GHG) pollutants [1, 2]. The mitigation of N2O on aftertreatment catalysts was shown to be ineffective as its formation and decomposition temperatures do not overlap. Therefore, the root causes for N2O formation were investigated to enable the catalyst architectures and controls development for minimizing its formation. In a typical heavy-duty diesel exhaust aftertreatment system based on selective catalytic reduction of NOx by ammonia derived from urea (SCR), the main contributors to tailpipe N2O are expected to be the undesired reaction between NOx and NH3 over SCR catalyst and NH3 slip in to ammonia slip catalyst (ASC), part of which gets oxidized to N2O.
2015-04-14
Journal Article
2015-01-1022
Jinyong Luo, Hongmei An, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets, Thomas Watkins, Larry Allard
Abstract In this contribution, nuanced changes of a commercial Cu-SSZ-13 catalyst with hydrothermal aging, which have not been previously reported, as well as their corresponding impact on SCR functions, are described. In particular, a sample of Cu-SSZ-13 was progressively aged between 550 to 900°C and the changes of performance in NH3 storage, oxidation functionality and NOx conversion of the catalyst were measured after hydrothermal exposure at each temperature. The catalysts thus aged were further characterized by NH3-TPD, XRD and DRIFTS techniques for structural changes. Based on the corresponding performance and structural characteristics, three different regimes of hydrothermal aging were identified, and tentatively as assigned to “mild”, “severe” and “extreme” aging. Progressive hydrothermal aging up to 750°C decreased NOx conversion to a small degree, as well as NH3 storage and oxidation functions.
2012-04-16
Technical Paper
2012-01-1294
Balaji Sukumar, Jianguo Dai, Asa Johansson, Penelope Markatou, Mehrdad Ahmadinejad, Timothy Watling, Bhargav Ranganath, Abhijeet Nande, Tamas Szailer
In recent years, ammonia slip catalysts (ASC) are being used downstream of an SCR system to minimize the ammonia slip. The dual-layer ASC is more attractive for its bi-functionality in reducing the ammonia and NOX emissions. It consists of two layers with the upper layer comprising a component with SCR functionality and the lower layer a PGM containing catalyst with oxidation functionality. Thus, both oxidation and SCR reactions take place in two different layers and are interlinked by the inter-layer mass transfer mechanism. In addition, adsorption and desorption kinetics between the gas and solid phases play a significant role. Mathematically, the overall system is a complex system of mass, momentum and energy transfer equations with temporal and spatial variables in both axial and radial directions. In this work, we focus on devising a suitable, computationally inexpensive model for such ASCs to be efficiently used for design, control and system optimization studies.
2015-09-29
Technical Paper
2015-01-2804
Travis Lee Walters, Phillip Shaw, Mahesh Madurai Kumar, Joshua Hoop
Abstract Drivability and powertrain refinement continue to gain importance in the assessment of overall vehicle quality. This notion has transcended its light duty origins and is beginning to gain considerable traction in the medium and heavy duty markets. However, with drivability assessment and refinement also comes the high costs associated with vehicle testing, including items such as test facilities, prototype component evaluation, fuel and human resources. Taking all of this into account, any and all measures must be used to reduce the cost of drivability evaluation and powertrain refinement. This paper describes an analysis based co-simulation methodology, where sophisticated powertrain simulation and objective drivability evaluation tools can be used to predict vehicle drivability. A fast running GT power engine model combined with simplified controls representation in Matlab/Simulink was used to predict engine transients and responses.
2014-09-30
Journal Article
2014-01-2339
Jon Dickson, Matthew Ellis, Tony Rousseau, Jeff Smith
Abstract Fuel efficiency for tractor/trailer combinations continues to be a key area of focus for manufacturers and suppliers in the commercial vehicle industry. Improved fuel economy of vehicles in transit can be achieved through reductions in aerodynamic drag, tire rolling resistance, and driveline losses. Fuel economy can also be increased by improving the efficiency of the thermal to mechanical energy conversion of the engine. One specific approach to improving the thermal efficiency of the engine is to implement a waste heat recovery (WHR) system that captures engine exhaust heat and converts this heat into useful mechanical power through use of a power fluid turbine expander. Several heat exchangers are required for this Rankine-based WHR system to collect and reject the waste heat before and after the turbine expander. The WHR condenser, which is the heat rejection component of this system, can be an additional part of the front-end cooling module.
2012-04-16
Technical Paper
2012-01-1096
Jin-Yong Luo, Aleksey Yezerets, Cary Henry, Howard Hess, Krishna Kamasamudram, Hai-Ying Chen, William S. Epling
The effects of propylene (C₃H₆) and dodecane (n-C₁₂H₂₆) exposure on the NH₃-based selective catalytic reduction (SCR) performance of two Cu-exchanged zeolite catalysts were investigated. The first sample was a model Cu/beta zeolite sample and the second a state-of-the-art Cu/zeolite sample, with the zeolite material characterized by relatively small pores. Overall, the state-of-the-art sample performed better than the model sample, in terms of hydrocarbon inhibition (which was reduced) and N₂O formation (less formed). The state-of-the-art sample was completely unaffected by dodecane at temperatures lower than 300°C, and only slightly inhibited (less than 5% conversion loss), for standard SCR, by C₃H₆. There was no evidence of coke formation on this catalyst with C₃H₆ exposure. The model sample was more significantly affected by hydrocarbon exposure. With C₃H₆, inhibition is associated with its partial oxidation intermediates adsorbed on the catalyst surface.
2012-04-16
Journal Article
2012-01-1084
Cary Henry, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets, Mario Castagnola, Hai-Ying Chen
In this work, an alternative method is proposed and validated for quantifying the axial performance of a state-of-the-art Cu zeolite SCR catalyst. Catalyst cores of a standard length, with varying lengths of wash-coated regions were used to axially resolve the functional performance of the SCR catalyst. This proposed method was validated by quantifying the catalyst entrance and exit effects, as well as the effect of non-uniform wash-coat loading densities. This method is less susceptible to some of the complications highlighted in the previous studies, such as flow uniformity between channels, as well as radiative heating effects, since the product gases are sampled across the entire monolith cross-section rather than through a single catalyst channel. The specific catalyst functions quantified include: NO and NH₃ oxidation, NH₃ storage capacity, as well as NOx conversion efficiency.
2013-04-08
Journal Article
2013-01-0508
Ashok Kumar, Krishna Kamasamudram, Aleksey Yezerets
In this study we investigated the interaction of short- and long-chain hydrocarbons (HCs), represented by propene (C₃H₆) and n-dodecane (n-C₁₂H₂₆), respectively, with a state-of-the-art small-pore Cu-Zeolite SCR catalyst. By varying HC adsorption conditions, we determined that physisorption was the primary mechanism for some minor HC storage at low temperatures (≺ 200°C), while chemical transformation was involved in more substantial HC storage at higher temperatures (200-400°C). The latter was evidenced by the oxygen-dependent and thermally activated nature of the storage process, and further confirmed by the carbon-rich composition of the deposits. The nature of HC-derived deposits of different origins and amounts was further probed using the standard SCR reaction at kinetically challenging conditions (at 200°C), as well by ammonia adsorption/desorption experiments.
2011-04-12
Journal Article
2011-01-1314
Krishna Kamasamudram, Aleksey Yezerets, Xu chen, Neal Currier, Mario Castagnola, Hai-Ying Chen
Mitigation of ammonia slip from SCR system is critical to meeting the evolving NH₃ emission standards, while achieving maximum NOx conversion efficiency. Ammonia slip catalysts (ASC) are expected to balance high activity, required to oxidize ammonia across a broad range of operating conditions, with high selectivity of converting NH₃ to N₂, thus avoiding such undesirable byproducts as NOx or N₂O. In this work, new insights into the behavior of an advanced ammonia slip catalyst have been developed by using accelerated progressive catalyst aging as a tool for catalyst property interrogation. The overall behavior was deconstructed to several underlying functions, and referenced to an active but non-selective NH₃ oxidation function of a diesel oxidation catalyst (DOC) and to the highly selective but minimally active NH₃ oxidation function of an SCR catalyst.
2015-09-29
Technical Paper
2015-01-2895
Prasad Vegendla, Tanju Sofu, Rohit Saha, Mahesh Madurai Kumar, Long-Kung Hwang
Abstract This paper investigates the aerodynamic influence of multiple on-highway trucks in different platooning configurations. Complex pressure fields are generated on the highways due to interference of multiple vehicles. This pressure field causes an aerodynamic drag to be different than the aerodynamic drag of a vehicle in a no-traffic condition. In order to study the effect of platooning, three-dimensional modeling and numerical simulations were performed using STAR-CCM+® commercial Computational Fluid Dynamics (CFD) tool. The aerodynamic characteristics of vehicles were analyzed in five different platooning configurations with two and three vehicles in single and multiple lanes. A significant Yaw Averaged Aerodynamic Drag (YAD) reduction was observed in both leading and trailing vehicles. YAD was based on the average result of three different yaw angles at 0°, −6° and 6°. In single-lane traffic, YAD reduction was up to 8% and 38% in leading and trailing vehicles, respectively.
2017-03-28
Journal Article
2017-01-0204
Gaurav Gosain, Billy Holland, Thomas McKinley
Abstract Understanding customer usage space and its impact on engine, after treatment, and vehicle duty cycles poses challenges in terms of data noise, data variability and complex interrelations. Moreover, humans are only able to concurrently visualize at most 2 to 3 dimensions, limiting the number of engine parameters that can be considered. Previous studies in this field have been limited to understanding trends in data based on single duty cycle, comparatively short application period and time domain segmented clustering analysis. These techniques have been used to determine representative cycles for specific applications. In this paper, K-Means Clustering is used to classify customer usage space based on tens of dimensions, for multiple duty cycles, and over years of operation. The clusters are evaluated based on system, sub-system, and component-based metrics on a day based unsegmented engine parameter values.
2016-10-17
Journal Article
2016-01-2322
Michael Lance, Andrew Wereszczak, Todd J. Toops, Richard Ancimer, Hongmei An, Junhui Li, Leigh Rogoski, Petr Sindler, Aaron Williams, Adam Ragatz, Robert L. McCormick
Abstract For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
2016-09-27
Technical Paper
2016-01-8070
Prasad Vegendla, Tanju Sofu, Rohit Saha, Mahesh Madurai Kumar, Long-Kung Hwang, Steven Dowding
Abstract Fan and fan-shroud design is critical for underhood air flow management. The objective of this work is to demonstrate a method to optimize fan-shroud shape in order to maximize cooling air mass flow rates through the heat exchangers using the Adjoint Solver in STAR-CCM+®. Such techniques using Computational Fluid Dynamics (CFD) analysis enables the automotive/transport industry to reduce the number of costly experiments that they perform. This work presents the use of CFD as a simulation tool to investigate and assess the various factors that can affect the vehicle thermal performance. In heavy-duty trucks, the cooling package includes heat exchangers, fan-shroud, and fan. In this work, the STAR-CCM+® solver was selected and a java macro built to run the primal flow and the Adjoint solutions sequentially in an automated fashion.
2017-01-10
Technical Paper
2017-26-0133
Ashok Kumar, Junhui Li, Jinyong Luo, Saurabh Joshi, Aleksey Yezerets, Krishna Kamasamudram, Niklas Schmidt, Khyati Pandya, Prachetas Kale, Thangaraj Mathuraiveeran
Abstract Advanced emission control systems for diesel engines usually include a combination of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and Ammonia Slip Catalyst (ASC). The performance of these catalysts individually, and of the aftertreatment system overall, is negatively affected by the presence of oxides of sulfur, originating from fuel and lubricant. In this paper, we illustrated some key aspects of sulfur interactions with the most commonly used types of catalysts in advanced aftertreatment systems. In particular, DOC can oxidize SO2 to SO3, collectively referred to as SOx, and store these sulfur containing species. The key functions of a DOC, such as the ability to oxidize NO and HC, are degraded upon SOx poisoning. The impact of sulfur poisoning on the catalytic functions of a DPF is qualitatively similar to DOC.
2013-11-20
Journal Article
2013-01-9072
Sumit Basu, Matthew Henrichsen, Pushkar Tandon, Suhao He, Achim Heibel
A simple 1-dimensional filter model, with symmetric and asymmetric channels, has been developed to investigate the fundamental behavior and performance of ceramic partial diesel particulate filters (PFs). The governing equations of mass and momentum are similar to those of a full DPF [7, 15]. A standard DPF with the plugs at its inlet face removed has been referred to as a ‘rear-plugged PF’ while, one with the plugs at the outlet face removed has been referred to as a ‘front-plugged PF’ in the present study. Removal of some of the plugs from a standard ceramic DPF reduces the (i) overall pressure drop (ΔP) across the filter, (ii) filtration efficiency (FE) of the DPF, and (iii) manufacturing cost. Partial filters stand a high chance of being deployed in diesel exhaust after-treatment systems for the emerging markets (Brazil, Russia, India, China) that follow Euro 4 emission regulations.
Viewing 1 to 30 of 30

    Filter

    • Range:
      to:
    • Year: