Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 7 of 7
2011-09-13
Technical Paper
2011-01-2268
Nagesh Belludi, Joshua Receveur, Jeremy Raymond
This paper presents an extension of our earlier work on Cummins Vehicle Mission Simulation (VMS) software. Previously, we presented VMS as a Windows based analysis tool to simulate vehicle missions quickly and to gauge, communicate, and improve the value proposition of Cummins engines to customers. We have subsequently extended this VMS architecture to build a grid-computing platform to support high volume of simulation needs. The building block of the grid-computing version of VMS is an executable file that consists of vehicle and engine simulation models compiled using Real Time Workshop. This executable file integrates MATLAB and Simulink with Java, XML, and JDBC technologies and interacts with the MySQL database. Our grid consists of a cluster of twenty Linux servers with quad-core processors. The Sun Grid Engine software suite that administers this cluster can batch-queue and execute 80 simulations concurrently.
2008-10-07
Journal Article
2008-01-2674
Ilya L. Piraner, Matthew P. Meek
Design of a light duty diesel for an automotive market presents contradictory challenges related to passenger car requirements for a compact, low weight design versus the diesel's base engine that must withstand cylinder pressures that are much greater than that seen on gasoline. This was a particular challenge for Cummins because of two reasons. First, design practices developed for Cummins' traditional heavy duty and industrial markets could lead to over-design, particularly for those items that have wear based life limits like bearings. Secondly, in the pursuit of new engine business it is necessary to be able to quickly yet accurately generate conceptual engine space claims for a variety of vehicle and engine specifications. When applying traditional guidelines for crank and bearing sizing, the resulting base engine size appeared an unsolvable problem relative to size and weight requirements.
2015-09-29
Technical Paper
2015-01-2804
Travis Lee Walters, Phillip Shaw, Mahesh Madurai Kumar, Joshua Hoop
Abstract Drivability and powertrain refinement continue to gain importance in the assessment of overall vehicle quality. This notion has transcended its light duty origins and is beginning to gain considerable traction in the medium and heavy duty markets. However, with drivability assessment and refinement also comes the high costs associated with vehicle testing, including items such as test facilities, prototype component evaluation, fuel and human resources. Taking all of this into account, any and all measures must be used to reduce the cost of drivability evaluation and powertrain refinement. This paper describes an analysis based co-simulation methodology, where sophisticated powertrain simulation and objective drivability evaluation tools can be used to predict vehicle drivability. A fast running GT power engine model combined with simplified controls representation in Matlab/Simulink was used to predict engine transients and responses.
2014-09-30
Journal Article
2014-01-2339
Jon Dickson, Matthew Ellis, Tony Rousseau, Jeff Smith
Abstract Fuel efficiency for tractor/trailer combinations continues to be a key area of focus for manufacturers and suppliers in the commercial vehicle industry. Improved fuel economy of vehicles in transit can be achieved through reductions in aerodynamic drag, tire rolling resistance, and driveline losses. Fuel economy can also be increased by improving the efficiency of the thermal to mechanical energy conversion of the engine. One specific approach to improving the thermal efficiency of the engine is to implement a waste heat recovery (WHR) system that captures engine exhaust heat and converts this heat into useful mechanical power through use of a power fluid turbine expander. Several heat exchangers are required for this Rankine-based WHR system to collect and reject the waste heat before and after the turbine expander. The WHR condenser, which is the heat rejection component of this system, can be an additional part of the front-end cooling module.
2015-09-29
Technical Paper
2015-01-2895
Prasad Vegendla, Tanju Sofu, Rohit Saha, Mahesh Madurai Kumar, Long-Kung Hwang
Abstract This paper investigates the aerodynamic influence of multiple on-highway trucks in different platooning configurations. Complex pressure fields are generated on the highways due to interference of multiple vehicles. This pressure field causes an aerodynamic drag to be different than the aerodynamic drag of a vehicle in a no-traffic condition. In order to study the effect of platooning, three-dimensional modeling and numerical simulations were performed using STAR-CCM+® commercial Computational Fluid Dynamics (CFD) tool. The aerodynamic characteristics of vehicles were analyzed in five different platooning configurations with two and three vehicles in single and multiple lanes. A significant Yaw Averaged Aerodynamic Drag (YAD) reduction was observed in both leading and trailing vehicles. YAD was based on the average result of three different yaw angles at 0°, −6° and 6°. In single-lane traffic, YAD reduction was up to 8% and 38% in leading and trailing vehicles, respectively.
2016-10-17
Journal Article
2016-01-2322
Michael Lance, Andrew Wereszczak, Todd J. Toops, Richard Ancimer, Hongmei An, Junhui Li, Leigh Rogoski, Petr Sindler, Aaron Williams, Adam Ragatz, Robert L. McCormick
Abstract For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
2016-09-27
Technical Paper
2016-01-8070
Prasad Vegendla, Tanju Sofu, Rohit Saha, Mahesh Madurai Kumar, Long-Kung Hwang, Steven Dowding
Abstract Fan and fan-shroud design is critical for underhood air flow management. The objective of this work is to demonstrate a method to optimize fan-shroud shape in order to maximize cooling air mass flow rates through the heat exchangers using the Adjoint Solver in STAR-CCM+®. Such techniques using Computational Fluid Dynamics (CFD) analysis enables the automotive/transport industry to reduce the number of costly experiments that they perform. This work presents the use of CFD as a simulation tool to investigate and assess the various factors that can affect the vehicle thermal performance. In heavy-duty trucks, the cooling package includes heat exchangers, fan-shroud, and fan. In this work, the STAR-CCM+® solver was selected and a java macro built to run the primal flow and the Adjoint solutions sequentially in an automated fashion.
Viewing 1 to 7 of 7

    Filter

    • Range:
      to:
    • Year: