Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Journal Article

Diesel Engine Technologies Enabling Powertrain Optimization to Meet U.S. Greenhouse Gas Emissions

2013-09-08
2013-24-0094
The world-wide commercial vehicle industry is faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. This work focuses on the new U.S. regulation of greenhouse gas (GHG) emissions from commercial vehicles and diesel engines and the most likely technologies to meet future anticipated standards while improving transportation freight efficiency. In the U.S., EPA and NHTSA have issued a joint proposed GHG rule that sets limits for CO2 and other GHGs from pick-up trucks and vans, vocational vehicles, semi-tractors, and heavy duty diesel engines. This paper discusses and compares different technologies to meet GHG regulations for diesel engines based on considerations of cost, complexity, real-world fidelity, and environmental benefit.
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Journal Article

Modeling Approach to Estimate EGR Cooler Thermal Fatigue Life

2015-04-14
2015-01-1654
Cooled EGR continues to be a key technology to meet emission regulations, with EGR coolers performing a critical role in the EGR system. Designing EGR coolers that reliably manage thermal loads is a challenge with thermal fatigue being a top concern. The ability to estimate EGR cooler thermal fatigue life early in the product design and validation cycle allows for robust designs that meet engine component reliability requirements and customer expectations. This paper describes a process to create an EGR cooler thermal fatigue life model. Components which make up the EGR cooler have differing thermal responses, consequently conjugate transient CFD must be used to accurately model metal temperatures during heating and cooling cycles. Those metal temperatures are then imported into FEA software for structural analysis. Results from both the CFD and FEA are then used in a simplified numerical model to estimate the virtual strain of the EGR cooler.
Journal Article

An Engine and Powertrain Mapping Approach for Simulation of Vehicle CO2 Emissions

2015-09-29
2015-01-2777
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
Journal Article

Analytic Solution for the Flow Distribution and Pressure Drop of Ceramic Partially-Plugged Wall Flow Diesel Particulate Filters

2015-04-14
2015-01-1056
A 1-dimensional analytic solution has been developed to evaluate the pressure drop and filtration performance of ceramic wall-flow partial diesel particulate filters (PFs). An axially resolved mathematical model for the static pressure and velocity profiles prevailing inside wall-flow filters, with such unique plugging configurations, is being proposed for the first time. So far, the PF models that have been developed are either iterative/numerical in nature [1], or based on commercial CFD packages [7]. In comparison, an analytic solution approach is a transparent and computationally inexpensive tool that is capable of accurately predicting trends as well as, offering explanations to fundamental performance behavior. The simple mathematical expressions that have been obtained facilitate rational decision-making when designing partial filters, and could also reduce the complexity of OBD logic necessary to control onboard filter performance.
Journal Article

Piston Cooling Nozzle Oil Jet Evaluation Using CFD and a High Speed Camera

2016-09-27
2016-01-8100
Piston cooling nozzles/jets play several crucial roles in the power cylinder of an internal combustion engine. Primarily, they help with the thermal management of the piston and provide lubrication to the cylinder liner and the piston’s wrist pin. In order to evaluate the oil jet characteristics from various piston cooling nozzle (PCN) designs, a quantitative and objective process was developed. The PCN characterization began with a computational fluid dynamics (CFD) turbulent model to analyze the mean oil velocity and flow distribution at the nozzle exit/tip. Subsequently, the PCN was tested on a rig for a given oil temperature and pressure. A high-speed camera captured images at 2500 frames per second to observe the evolution of the oil stream as a function of distance from the nozzle exit. An algorithm comprised of standard digital image processing techniques was created to calculate the oil jet width and density.
Journal Article

Multi-Domain Simulation Model of a Wheel Loader

2016-09-27
2016-01-8055
Wheel loader subsystems are multi-domain in nature, including controls, mechanisms, hydraulics, and thermal. This paper describes the process of developing a multi-domain simulation of a wheel loader. Working hydraulics, kinematics of the working tool, driveline, engine, and cooling system are modeled in LMS Imagine.Lab Amesim. Contacts between boom/bucket and bucket/ground are defined to constrain the movement of the bucket and boom. The wheel loader has four heat exchangers: charge air cooler, radiator, transmission oil cooler, and hydraulic oil cooler. Heat rejection from engine, energy losses from driveline, and hydraulic subsystem are inputs to the heat exchangers. 3D CFD modeling was done to calibrate airflows through heat exchangers in LMS Amesim. CFD modeling was done in ANSYS FLUENT® using a standard k - ε model with detailed fan and underhood geometry.
Journal Article

Aftertreatment Architecture and Control Methodologies for Future Light Duty Diesel Emission Regulations

2017-03-28
2017-01-0911
Future light duty vehicles in the United States are required to be certified on the FTP-75 cycle to meet Tier 3 or LEV III emission standards [1, 2]. The cold phase of this cycle is heavily weighted and mitigation of emissions during this phase is crucial to meet the low tail pipe emission targets [3, 4]. In this work, a novel aftertreatment architecture and controls to improve Nitrogen Oxides (NOx) and Hydrocarbon (HC) or Non Methane Organic gases (NMOG) conversion efficiencies at low temperatures is proposed. This includes a passive NOx & HC adsorber, termed the diesel Cold Start Concept (dCSC™) catalyst, followed by a Selective Catalytic Reduction catalyst on Filter (SCRF®) and an under-floor Selective Catalytic Reduction catalyst (SCR). The system utilizes a gaseous ammonia delivery system capable of dosing at two locations to maximize NOx conversion and minimize parasitic ammonia oxidation and ammonia slip.
Journal Article

Effects of Methyl Ester Biodiesel Blends on NOx Emissions

2008-04-14
2008-01-0078
Effects of methyl ester biodiesel fuel blends on NOx emissions are studied experimentally and analytically. A precisely controlled single cylinder diesel engine experiment was conducted to determine the impact of a 20% blend of soy methyl ester biodiesel (B20) on NOx emissions. The data were then used to calibrate KIVA chemical kinetics models which were used to determine how the biodiesel blend affects NOx production during the combustion process. In addition, the impact on the engine control system of the lower specific energy content of biodiesel was determined. Both factors, combustion and controls, must be taken into account when determining the net NOx effect of biodiesel compared to conventional diesel fuel. Because the magnitude and even direction of NOx effect changes with engine load, the NOx effect associated with burning biodiesel blends over a duty cycle depends on the duty cycle average power and fuel cetane number.
Journal Article

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

2013-04-08
2013-01-0282
Light duty vehicle emission standards are getting more stringent than ever before as stipulated by US EPA Tier 2 Standards and LEV III regulations proposed by CARB. The research in this paper sponsored by US DoE is focused towards developing a Tier 2 Bin 2 Emissions compliant light duty pickup truck with class leading fuel economy targets of 22.4 mpg “City” / 34.3 mpg “Highway”. Many advanced technologies comprising both engine and after-treatment systems are essential towards accomplishing this goal. The objective of this paper would be to discuss key engine technology enablers that will help in achieving the target emission levels and fuel economy. Several enabling technologies comprising air-handling, fuel system and base engine design requirements will be discussed in this paper highlighting both experimental and analytical evaluations.
Technical Paper

Quantification of Biodiesel Content in Fuels and Lubricants by FTIR and NMR Spectroscopy

2006-10-16
2006-01-3301
The use of biodiesel requires the development of proper quantification procedures for biodiesel content in blends and in lubricants (fuel dilution in oil). Although the ester carbonyl stretch at 1746 wavenumbers (cm-1) is the most prominent band in the IR spectrum of biodiesel, it is difficult to use for quantification purposes due to a severe fluctuation of absorption strength from sample to sample, even at the same biodiesel content. We have demonstrated that the ester carbonyl fluctuation is not caused by variation in the ester alkyl chain length; but is most likely caused by the degree of hydrogen bonding of the ester functional group with water in the sample. Water molecules can form complexes with the ester compound affecting the strength of the ester carbonyl band. The impact of water on quantification of the biodiesel content of blends was significant, even for B100 samples that met the proposed ASTM D6751 water limit of 500 ppm by D6304 (Karl Fischer Methdod).
Technical Paper

Correlation of Cylinder Head Gasket Sealing Analysis Results between Gasket Element and 3D Continuum Element

2020-03-10
2020-01-0049
A head gasket is a component that sits between the engine block/liner and cylinder head(s) in an internal combustion engine. Its purpose is to seal high pressure combustion gasses in the cylinders and to seal coolant and engine oil. It is the most critical sealing application in an engine. As a general practice, the load deflection(L/D) characteristic is generated by the gasket manufacturer for edge molded or composite gasket types. However, in the case of a solid-sheet metallic gasket, where the gasket is expected to undergo localized yielding to provide adequate conformance and sealing, usually supplier may not be able to provide the required L/D curve due to difficulties to experimentally separate the large loads and small displacements from the elastic loads and deflections of the experimental apparatus. In absence of L/D curve, the typical analysis approach is to model gasket as 3D continuum elements available in ansys by considering nonlinear material and frictional contacts.
Journal Article

Emissions Certification Vehicle Cycles Based on Heavy Duty Engine Test Cycles

2012-04-16
2012-01-0878
This paper describes the development vehicle cycles based on heavy duty engine test cycles for emissions certification. In the commercial vehicle and industrial equipment markets, emissions are evaluated using engine test cycles. For the on-highway market in the United States, these cycles include the transient heavy duty engine FTP test, and the steady state heavy duty engine SET test. Evaluation of engine only emissions is a practical approach given the diversity of applications, small volumes, and lack of vertical integration in the commercial vehicle market. However certain vehicle and powertrain characteristics can contribute significantly to fuel consumption and emissions. A number of approaches have been proposed to evaluate vehicle performance, and all of these vehicle evaluation methodologies require the selection of a vehicle cycle.
Technical Paper

Rapid In Situ Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy

2007-10-29
2007-01-4108
A technique for rapid in situ measurement of the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background oil fluorescence; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the engine oil system. A low cost 532-nm laser diode was used for excitation.
Technical Paper

An Evaluation of Glycerin (Glycerol) as a Heavy Duty Engine Antifreeze/Coolant Base

2007-10-29
2007-01-4000
In the early years of antifreeze/coolants (1920s & 30s) glycerin saw some usage, but because of higher cost and weaker freeze point depression, it was not competitive with ethylene glycol. Glycerin is a by-product of the manufacture of biodiesel (fatty acid methyl esters) made by reacting natural vegetable or animal fats with methanol. Biodiesel fuel is becoming increasingly important and is expected to gain a large market share in the next several years. Regular diesel fuels blended with 2%, 5%, and 20% biodiesel are now commercially available. The large amount of glycerin generated from high volume usage of biodiesel fuel has resulted in this chemical becoming cost competitive with the glycols currently used in engine coolants. For this reason, and lower toxicity comparable to that of propylene glycol, glycerin deserves to be reconsidered as a base for antifreeze/coolant.
Technical Paper

Development of a Hybrid, Auto-Ignition/Flame-Propagation Model and Validation Against Engine Experiments and Flame Liftoff

2007-04-16
2007-01-0171
In previous publications, Singh et al. [1, 2] have shown that direct integration of CFD with a detailed chemistry auto-ignition model (KIVA-CHEMKIN) performs reasonably well for predicting combustion, emissions, and flame structure for stratified diesel engine operation. In this publication, it is shown that the same model fails to predict combustion for partially premixed dual-fuel engines. In general, models that account for chemistry alone, greatly under-predict cylinder pressure. This is shown to be due to the inability of such models to simulate a propagating flame, which is the major source of heat release in partially premixed dual-fuel engines, under certain operating conditions. To extend the range of the existing model, a level-set-based, hybrid, auto-ignition/flame-propagation (KIVA-CHEMKIN-G) model is proposed, validated and applied for both stratified diesel engine and partially premixed dual-fuel engine operation.
Technical Paper

Cummins Vehicle Mission Simulation Tool: Software Architecture and Applications

2010-10-05
2010-01-1997
This paper presents the business purpose, software architecture, technology integration, and applications of the Cummins Vehicle Mission Simulation (VMS) software. VMS is the value-based analysis tool used by the marketing, sales, and product engineering functions to simulate vehicle missions quickly and to gauge, communicate, and improve the value proposition of Cummins engines to customers. VMS leverages the best of software architecture practices and proven technologies available today. It consists of a close integration of MATLAB and Simulink with Java, XML, and JDBC technologies. This Windows compatible application software uses stand-alone mathematical models compiled using Real Time Workshop. A built-in MySQL database contains product data for engines, driveline components, vehicles, and topographic routes. This paper outlines the database governance model that facilitates effective management, control, and distribution of engine and vehicle data across the enterprise.
Technical Paper

Interaction Between Fuel Additive and Oil Contaminant: (II) Its Impact on Fuel Stability and Filter Plugging Mechanism

2003-10-27
2003-01-3140
Sulfur containing species as well as other polar molecules provide lubricity and thermal stability to diesel fuels. During the refining process to produce low and ultra-low sulfur diesel fuels, these components are removed. As a result, fuel additives such as lubricity agents and antioxidant may be added to protect fuel stability and prevent fuel pump wear. Some lubricity additives, such as dimer acids, resulted in fuel filter plugging. The plugging mechanism was related to the capability of aliphatic acids to form agglomeration by interactions with the overbased detergents, delivered into the fuel as oil contaminants. Other sources of acids, derived from thermal degradation, can lead to the same problem. In this study, individual lubricant additives were mixed in the fuel to form single- and dual-component systems. Levels of compatibility and amounts of interaction products were evaluated for individual solutions.
X