Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 90
2011-09-13
Technical Paper
2011-01-2270
Andres Font
The continuously integration of electrics and electronics (EE) in the last decades is one of the main key drivers for innovation and business success of the Automotive OEMs. This is also applicable for truck manufacturers. On the other side factors like the rising vehicle complexity, number of variants and the warranty costs for EE issues are increasing the pressure on the engineering teams responsible for the mechatronic systems. To address these issues one of the key activities in the European market (focus on Germany) during the last decade was to introduce industry-wide standards for the data transfer of wiring harness data between OEM and harness supplier. In this paper the benefits and technical background of using the standards KBL and KOMP formats within the MB-Trucks brand will be presented. Moreover the role of the Information Technology (IT) will be explained in detail.
2011-09-13
Technical Paper
2011-01-2263
Thomas Bardelang
Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. In addition to a multi-stage test process focusing on the functions of the driver assistance systems (software), the “electrical” aspects (hardware) also form part of holistic maturity level validation. The test process is supported by state-of-the-art, high-performance tools (e.g. automatable component test benches and overall vehicle HiL systems) which, in particular, allow quick and accurate configuration in line with different vehicle variants.
2011-04-12
Technical Paper
2011-01-1440
Emrah Cihan Çebi, Gregor Rottenkolber, Erol Uyar
The objective of this work was the development of a real-time capable in-cylinder pressure based diesel engine-out PM estimator. Two types of experimental passenger car DI diesel engines, equipped with in-cylinder pressure sensors have been used for the PM estimator development. Measurements have been taken during steady state and transient operation on an engine test bench. Using the Engine ECU signals and in-cylinder pressure data new parameters have been derived and used as inputs for an exponential zero dimensional modeling approach. Good correlation between the estimated and measured PM has been achieved for various experiments, not only for steady state operation points but also for transient measurements. Particularly, the model delivers good qualitative results, as well as good quantitative results in some regions. PM gradients, that is, the tendency of PM to increase or decrease from one engine operating point to another are represented successfully.
2011-08-30
Technical Paper
2011-01-1742
Steffen Dehn, Christian Duelk, Sharath Srinivas, Avi Anthony Cornelio
The electric turbocharger is a promising type of air supply unit for future automotive fuel cell drive systems. It comprises of a centrifugal compressor, a variable geometry turbine and a permanent magnet synchronous motor assembled on a single shaft. Compared to other types of vehicular fuel cell air supplies, like for example a screw or roots compressor, it needs less installation space and has lower weight while also causing less noise and vibration. This paper presents a validated mechanistic model of the electric turbocharger. The stationary compressor model is based on a set of aerodynamic loss models with surge and stone wall line prediction capability. Similarly, the stationary variable axial turbine is a detailed station based model derived from aerodynamic losses at the turbine wheel and the stator blades. The aerodynamic losses incorporated in the compressor and the turbine models are implemented under MATLAB/Simulink and show a good correlation with the experimental data.
2011-04-12
Journal Article
2011-01-1319
Isabella Nova, Massimo Colombo, Enrico Tronconi, Volker Schmeisser, Michel Weibel
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
2013-01-09
Technical Paper
2013-26-0061
Shivakumar B, Ramesh A, Vaishnavi P, Avi A. Cornelio, Dirk Limperich
The need for a consistent and reliable calculation of thermodynamic property of refrigerants has been a topic of research since the past decade. This paper reports a study of various cubic equations of state for a refrigerant being used in automotive air-conditioning applications. The thermodynamic property of refrigerant 1,1,1,2 tetrafluoroethane (commercially known as R134a) is estimated for this purpose. A comparative analysis is made on three sets of equations of state. They are Redlich Kwong equation (RK), Peng Robinson equation (PR) and Patel Teja equation. It is found that the Patel-Teja and Peng-Robinson equations are accurate in the operating region of automotive air-conditioning system. Using these literature based equations and Maxwell correlations, thermodynamic models are developed. They estimate thermodynamic properties of saturated liquid/vapor, sub-cooled liquid and superheated vapor phases.
2013-09-08
Technical Paper
2013-24-0113
Tobias Schöffler, Kai Hoffmann, Thomas Koch
In this paper experimental results of a medium duty single cylinder research engine with spark ignition are presented. The engine was operated with stoichiometric natural gas combustion and additional charge dilution by means of external and cooled exhaust gas recirculation (EGR). The first part of this work considers the benefits of cooled EGR on thermo-mechanical stress of the engine including exhaust gas temperature, cylinder head temperature, and knock behaviour. This is followed by the analysis of the influence of cooled EGR on the heat release rate. In this context the impact of fuel gas composition is also under investigation. The influence of increasing EGR on fuel efficiency, which is caused by a changed combustion process due to higher fractions of inert gases, is shown in this section. By application of different pistons a relationship between the piston bowl geometry and the flame propagation has been demonstrated.
2014-04-01
Journal Article
2014-01-0595
Georgios Fontaras, Panagiota Dilara, Michael Berner, Theo Volkers, Antonius Kies, Martin Rexeis, Stefan Hausberger
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
2014-04-01
Technical Paper
2014-01-0681
Shivakumar Banakar, Dirk Limperich, Ramesh Asapu, Vaishnavi Panneerselvam, Madhu Singh
Abstract Air-cooled fin and tube heat exchangers are used as a condenser in the conventional automotive Heating Ventilation & Air-Conditioning (HVAC) systems. In this study, the use of liquid cooled plate heat exchanger as a condenser in the automotive HVAC systems has been investigated. In the proposed configuration, the cabin heat absorbed by the refrigerant in HVAC system is rejected to the coolant through a liquid cooled condenser and then to the ambient air through a low temperature radiator. Hence, the proposed configuration combines heat rejection from HVAC system with a low temperature radiator circuit of power train cooling. Mixture of Ethylene glycol & Water (coolant), which is used in power train cooling system, is used as secondary fluid in the condenser.
2015-04-14
Journal Article
2015-01-1220
Daniel Goerke, Michael Bargende, Uwe Keller, Norbert Ruzicka, Stefan Schmiedler
Abstract In this paper a rule-based energy management for parallel hybrid electric vehicles (HEVs) is presented, which is based on the principles describing the optimal control behavior. Therefore we first show the general relations that can be used to describe the optimal limit of electric driving as well as the optimal torque split among the two propulsion systems. Subsequently these relations are employed to derive maps, which represent the optimal behavior depending on several input parameters. These maps are then used as inputs for the rules in the proposed energy management. This not only makes it possible to automatically calibrate the rule-based controller but also gives the optimal control in every driving situation. Given it is not fuel-efficient to turn the internal combustion engine (ICE) on or off for short intervals, it is further shown how this approach allows to adjust the established limit for electric driving by additional rules.
2015-04-14
Technical Paper
2015-01-0340
Jan Eller, Thomas Binner, Heinrich Reister, Nils Widdecke, Jochen Wiedemann
Abstract Collective life-cycle data is needed when developing components like elastomer suspension mounts. Life-time prediction is only possible using thermal load frequency distributions. In addition to current extreme load cases, the Idle Load Case is examined at Mercedes-Benz Car Group as a collective load case for Vehicle Thermal Management (VTM) numerical simulations in early development stages. It combines validation opportunities for HVAC, cooling and transmission requirements in hot-country-type ambient conditions. Experiments in climatic wind tunnels and coupled 3D CFD and heat transfer simulations of the Idle Load Case have been performed. Measurements show steady conditions at the end of the load case. Decoupling of the torque converter, changes in ambient temperature and the technical implementation of a wind barrier for still air conditions exhibit influence on component-level results. Solar load, however, does not significantly change the examined component temperatures.
2015-04-14
Technical Paper
2015-01-0360
Maryline Leriche, Wolfgang Roessner, Heinrich Reister, Bernhard Weigand
Abstract An accurate model to predict the formation of fogging and defogging which occurs for low windshield temperatures is helpful for designing the air-conditioning system in a car. Using a multiphase flow approach and additional user-defined functions within the commercial CFD-software STAR-CCM+, a model which is able to calculate the amount of water droplets on the windshield from condensation and which causes the fogging is set up. Different parameters like relative humidity, air temperature, mass flow rate and droplet distributions are considered. Because of the condition of the windshield's surface, the condensation occurs as tiny droplets with different sizes. The distribution of these very small droplets must be obtained to estimate numerically the heat transfer coefficient during the condensation process to predict the defogging time.
2010-04-12
Technical Paper
2010-01-1172
Norbert Waldbuesser, Josef Guenther, Hanns Hoffmann, Oliver Erlenmayer, Frank Duvinage, Christian Enderle, Joachim Schommers, Dieter Waeller
Beginning in 2010, Daimler's well-known Diesel Sprinter van has to fulfill the new and clearly tighter NOx emission standards of NAFTA10 (EPA, CARB). This requires an integrated approach of further engine optimizations and the implementation of an innovative exhaust aftertreatment technology. The goal was to develop an overall concept which meets simultaneously the tightened emission standards (including OBD limits) and the increasing customer demands of more power and torque without losing the high fuel efficiency of the small and highly efficient 3-liter V6 diesel engine OM642, which already has been installed in the NAFTA07 Sprinter. In the early stages of the concept phase, the most appropriate NOx aftertreatment technology and certification form (engine or vehicle) had to be selected for this specific vehicle class in the van segment with enhanced requirements to durability, economical efficiency and specific driving behavior.
2010-04-12
Technical Paper
2010-01-1212
Peter Lanzerath, Anke Traebert, Alexander Massner, Uwe Gaertner
For medium- and heavy-duty diesel engines, the development of new catalyst technologies and particulate filters is necessary to fulfill increasingly stringent emission regulations. An important aspect is the durability of the after-treatment system and therefore its efficiency over lifetime. Lubrication oil additives contain components such as phosphorous or zinc to ensure engine durability. Diesel oxidation catalyst (DOC) and coated diesel particulate filter (cDPF) catalytic coatings are negatively influenced by contamination on the surface with these components (chemical ageing). The components have a negative impact on the exhaust after-treatment systems performance. Additionally the cDPF is filled with oil ash. Engine tests are conducted to analyze the effect of lubrication oil additives on after-treatment system performance. In one study, lubrication oil with increased sulfur ash content is used.
2010-04-12
Technical Paper
2010-01-0467
Derek Rotz, Alexander Bracht, Ole Henry Dorum, Kevin Moran, James Lynch
The economic challenges and environmental imperatives facing the trucking and automobile industries today all point to a pressing need to improve fuel efficiency. Due to increasing volatility of fuel supplies, prices and a growing interest in reducing greenhouse gas emissions, fuel efficiency has taken on new urgency. In the long-haul trucking industry this is especially important given the fact that fuel accounts for a significant share of fleet operating costs. To this end Daimler and NAVTEQ have developed a system to improve fuel economy and reduce CO₂ emissions through the integration of digital map data into Advanced Driver Assistance Systems or ADAS. Digital road map attributes, especially road slope have been demonstrated to enable powertrain controls to anticipate road inclination changes and use this information to predictively enhance load management optimization versus the reactive approach afforded by current technology.
2009-11-02
Journal Article
2009-01-2679
Galin Nakov, Fabian Mauss, Paul Wenzel, Rüdiger Steiner, Christian Krüger, Yongzhe Zhang, Rajesh Rawat, Anders Borg, Cathleen Perlman, Karin Fröjd, Harry Lehtiniemi
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library.
2009-05-19
Technical Paper
2009-01-2243
René Visser
As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
2009-09-13
Journal Article
2009-24-0117
Martin Hese, Helmut Tschöke, Tobias Breuninger, Frank Altenschmidt, Harald Winter
This study describes tests with a fast clocked multispark ignition system intended to improve the stability of inflammation during charge stratification. The advantage of this ignition system is the capability it provides to adjust the number of sparks, the duration of single sparks and the intensity of the primary current. The basic engine test parameters were first set in an optically accessible pressure chamber under conditions approximating an engine. Two strategies were examined to analyze their effect on inflammation in stratified charge mode. On the one hand, the multispark ignition (MSI) system allows implementing an intermittent spark sequence in the spark gap between the spark plug electrodes. On the other hand, precisely timed pulsing of spark energy into the plasma channel during charge motion can generate a very large deflection of the ignition spark.
2010-10-10
Technical Paper
2010-01-1698
Andreas Bender, Karl Haesler, Claus Thomas, Jaroslaw Grochowicz
Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
2014-06-30
Technical Paper
2014-01-2065
Albert Albers, Rui Cai, Rainer Spengler, Christian Olfens, Matthias Behrendt
Abstract The driving comfort influences the customer purchase decision; hence it is an important aspect for the vehicle development. To better quantify the comfort level and reduce the experiment costs in the development process, the subjective comfort assessment by test drivers is nowadays more and more replaced by the objective comfort evaluation. Hereby the vibration comfort is described by scalar objective characteristic parameters that correlate with the subjective assessments. The correlation analysis requires the assessments and measurements at different vehicle vibration. To determine the objective parameters regarding the powertrain excitations, most experiments in the previous studies were carried out in several test vehicles with different powertrain units.
2014-06-30
Technical Paper
2014-01-2072
Christoph Meier, Dirk Lieske, Stefan Bikker
Abstract Electric cars are getting popular more and more and the expectations of the customers are very challenging. Concerning comfort, the situation is clear: customers want an electric car to be quiet and without any annoying noise from the powertrain. To develop an electric powertrain with a minimum noise level and minimized whining it is necessary to have an accurate CAE-simulation and precise criteria to assess whining noise. Based on the experience with electric powertrains in research cars the CAE-modelling was improved and a new ‘whining intensity factor’ was acquired for the development of Daimler's electric cars. The results are a very low noise level and a minimized whining noise, nearly not noticeable giving a comfortable sound to the customers of the smart electric drive and the B-Class Electric Drive.
2014-06-30
Journal Article
2014-01-2075
Gregor Koners, Ralf Lehmann
Abstract Low interior noise levels in combination with a comfortable sound is an important task for passenger cars. Due to the reduction of many noise sources over the last decades, nowadays tire-road noise has become one of the dominant sources for the interior noise. Especially for manufactures of luxury cars, the reduction of tire-road noise is a big challenge and therefore a central part of NVH development. The knowledge of the noise transmission behavior based on the characteristics of the relevant sources is a fundamental of a modern NVH - development process. For tire-road noise the source characteristics can be described by wheel forces and radiated airborne noise. In combination with the related vehicle transfer functions it is possible to describe the noise transmission behavior in detail. A method for estimating wheel forces and radiated airborne noise is presented.
2014-04-01
Journal Article
2014-01-1990
Jesse Schneider, Graham Meadows, Steven R. Mathison, Michael J. Veenstra, Jihyun Shim, Rainer Immel, Morten Wistoft-Ibsen, Spencer Quong, Manfred Greisel, Timothy McGuire, Peter Potzel
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
2015-01-01
Journal Article
2014-01-9053
Tobias Breuninger, Jürgen Schmidt, Helmut Tschoeke, Martin Hese, Andreas Kufferath, Frank Altenschmidt
The spray-guided combustion process offers a high potential for fuel savings in gasoline engines in the part load range. In this connection, the injector and spark plug are arranged in close proximity to one another, as a result of which mixture formation is primarily shaped by the dynamics of the fuel spray. The mixture formation time is very short, so that at the time of ignition the velocity of flow is high and the fuel is still largely present in liquid form. The quality of mixture formation thus constitutes a key aspect of reliable ignition. In this article, the spray characteristics of an outward-opening piezo injector are examined using optical testing methods under pressure chamber conditions and the results obtained are correlated with ignition behaviour in-engine. The global spray formation is examined using high-speed visualisation methods, particularly with regard to cyclical fluctuations.
2013-04-08
Technical Paper
2013-01-0843
Heinrich Reister, Ernst Peter Weidmann, Thomas Walker, Sachin Badarayani
In this paper a new numerical methodology to compute component temperatures of a rotating cardan shaft is described. In general temperatures of the cardan shaft are mainly dominated by radiation from the exhaust gas system and air temperatures in the transmission tunnel and underbody. While driving the cardan shaft is rotating. This yields a uniform temperature distribution of the circumference of the shaft. However most simulation approaches for heat protection are nowadays steady-state computations. In these simulations the rotation of the cardan shaft is not considered. In particular next to the exhaust gas system the distribution of the temperatures of the cardan shaft is not uniform but shows hot temperatures due to radiation at the side facing the exhaust gas system and lower temperatures at the other side. This paper describes a new computational approach that is averaging the radiative and convective heat fluxes circumferentially over bands of the cardan shaft.
2013-04-08
Technical Paper
2013-01-0873
Mario Disch, Nils Widdecke, Jochen Wiedemann, Heinrich Reister, Ernst Peter Weidmann
In the digital prototype development process of a new Mercedes-Benz, thermal protection is an important task that has to be fulfilled. In the early stages of development, numerical methods are used to detect thermal hotspots in order to protect temperature sensitive parts. These methods involve transient full Vehicle Thermal Management (VTM) simulations to predict dynamic vehicle heat-up during critical load cases. In order to simulate thermal control mechanisms, a coupled 1D to 3D thermal vehicle model is built in which the coolant and oil circuit of the engine, as well as the exhaust flow are captured in detail. When performing a transient 3D VTM analysis, the conduction and radiation phenomena are simulated using a transient structure model while the convective phenomena are co-simulated in a steady state fluid model. Both models are brought to interaction at predetermined points by an automatized coupling method.
2013-04-08
Journal Article
2013-01-1064
Volker Schmeisser, Michel Weibel, Laura Sebastian Hernando, Isabella Nova, Enrico Tronconi, Maria Pia Ruggeri
NH₃/urea SCR is a very effective and widely used technology for the abatement of NOx from diesel exhaust. The SCR mechanism is well understood and the catalyst behavior can be predicted by mathematical models - as long as operation above the temperature limit for AdBlue® injection is considered. The behavior below this level is less understood. During the first seconds up to minutes after cold start, complete NOx abatement can be observed over an SCR catalyst in test bench experiments, together with a significant increase in temperature after the converter (ca. 100 K). In this work these effects have been investigated over a monolith Cu-zeolite SCR catalyst. Concentration step experiments varying NO, NO₂ and H₂O have been carried out in lab scale, starting from room temperature. Further, the interaction of C₃H₆ and CO with NOx over the SCR has been investigated.
2013-05-13
Journal Article
2013-01-1922
Willy Armand Fongue
Air spring systems gain more and more popularity in the automotive industry and with the ever growing demand for comfort nowadays they are almost inevitable. Some significant advantages over conventional steel springs are appealing for commercial vehicles as well as for the modern passenger vehicles in the luxury class. Current production air spring systems exist in combination with hydraulic shock absorbers (integrated or resolved). An alternative is to use the medium air not only as a spring but also as a damper: a so-called air spring air damper. Air spring air dampers are force elements which could be a great step for the chassis technology due to their functionality (frequency selectivity, load levelling, load independent vibration behaviour, load dependent damping). Some of their design which avoid dynamic seals by the using of rubber bellows contribute to a better ride comfort.
2013-04-08
Technical Paper
2013-01-0568
Michael Fritz, Frank Gauterin, Michael Frey, Justus Wessling, Enrico Wohlfarth, Ralf Oberfell
Rising oil prices and increasing strict emission legislation force vehicle manufacturers to reduce fuel consumption of future vehicles. In order to meet this target, the process of converting fuel into useable energy and the use of this energy by the different energy-consuming vehicle's subsystems have to be examined. Vehicles' subsystems consist of energy-supplying, energy-consuming, and in some cases energy-storing components. Due to the high complexity of these systems and their interaction, optimization of their energy efficiency is a challenging task. By introducing individual operational strategies for each subsystem, it is possible to increase the energy efficiency for a specific function. To further improve the vehicle's overall energy efficiency, holistic control strategies are introduced that distribute the energy between the subsystems intelligently.
2013-04-08
Technical Paper
2013-01-0781
Gunther Seipel, Hermann Winner, Frank Baumann, Ralf Hermanutz
The objective of the presented research is to analyze the cause-and-effect chain of the emergence of tire marks and to indentify how the intensity of a friction-related tire mark on asphalt or concrete pavements can provide additional information related to forces or slips at the marking wheels. Focusing on tire marks due to abrasive wear, the influences on the intensity of tire marks are analyzed based on three categories: vehicle dynamic parameters, tire and road properties, which determine the sensitivity of tire marking for a specific tire-road combination for constant vehicle dynamic parameters; and optical parameters, influencing the contrast of a given tire mark. The analysis includes a new objective method for the assessment of the tire mark intensities derived by photos of tire marks, generated with a tire measurement trailer. Additionally a test rig was developed to determine the tire marking sensitivity with reference marks under controlled friction conditions.
Viewing 1 to 30 of 90

Filter

  • Range:
    to:
  • Year: