Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Modelling of NOx Storage + SCR Exhaust Gas Aftertreatment System with Internal Generation of Ammonia

2010-04-12
2010-01-0887
Combination of an NOx storage and reduction catalyst (NSRC, called also lean NOx trap, LNT) and a catalyst for the selective catalytic reduction of NOx by NH₃ (NH₃-SCR) offers a potential to significantly increase the efficiency of NSRC-based exhaust gas aftertreatment systems. Under most situations the SCR catalyst is able to adsorb the NH₃ peaks generated in the NSRC during the regeneration and utilize it for additional NOx reduction in the course of the consequent lean phase. This synergy becomes more important with the aged NSRC, where generally lower NOx conversions and higher NH₃ yields in wider range of operating temperatures are observed (in comparison with the fresh or de-greened NSRC). In this paper we present global kinetic models for the NSRC (Pt/Ba/Ce/gγ-Al₂O₃ catalyst type) and NH₃-SCR (Fe-ZSM5 catalyst type).
Journal Article

Numerical Simulation of DOC+DPF+SCR systems:DOC Influence on SCR Performance

2008-04-14
2008-01-0867
A numerical model for a diesel oxidation catalyst (DOC) is presented. It is based on a spatially 1D, physical and chemically based modeling of the relevant processes within the catalytic monolith. A global reaction kinetic approach has been chosen to describe the chemical reactions. Water condensation and evaporation was also considered, in order to predict the cold start behavior. Reaction kinetic parameters have been evaluated from a series of laboratory experiments. A correlation between the kinetic parameters and the noble metal loading was developed. The model was used in combination with a SCR-Model to study the influence of changes of noble metal loading and DOC volume on the overall transient NOx performance of a DOC+DPF+SCR system.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Journal Article

Fire Fighting of Li-Ion Traction Batteries

2013-04-08
2013-01-0213
The number of full electric and hybrid electric vehicles is rapidly growing [1][2][3]. The new technologies accompanying this trend are increasingly becoming a focal point of interest for rescue services. There is much uncertainty about the right techniques to free trapped occupants after an accident. The same applies to vehicle fires. Can car fires involving vehicles with a lithium ion traction battery be handled in the same way as conventional vehicle fires? Is water the right extinguishing agent? Is there a risk of explosion? There are many unanswered questions surrounding the topic of electric vehicle safety. The lack of information is a breeding ground for rumours, misinformation and superficial knowledge. Discussions on various internet platforms further this trend. Tests were conducted on three lithium ion traction batteries, which were fuel-fired until burning on their own. The batteries were then extinguished with water, a surfactant and a gelling agent.
Technical Paper

Bluetec Emission Control System for the US Tier 2 Bin 5 Legislation

2008-04-14
2008-01-1184
While the market share for diesel engines for LD vehicles in Europe has grown continuously in the past years, the market share in North America is still negligible. Until now, it has been possible to fulfill the limits for nitrogen oxides (NOx) both in Europe and in North America by engine measures alone, without using an active NOx aftertreatment system. With the introduction of Tier II Bin 8 and Tier II Bin 5 emissions legislation in the US in 2007, most new diesel applications will now require NOx aftertreatment. One of the possible technologies for the reduction of nitrogen oxides in lean exhaust gas is the NOx storage catalyst which has become the generally-accepted choice for engines with gasoline direct injection systems and which is also utilized in the current diesel Bluetec I systems from Daimler. For heavier applications urea-SCR is the preferred technology to fulfill NOx legislation limits.
Technical Paper

BLUETEC Diesel Technology - Clean, Efficient and Powerful

2008-04-14
2008-01-1182
Diesel engines have a strong contribution to the CO2 reduction in Europe in the past years. To enable these C02 reduction potential to the US market Mercedes Benz developed the BLUETEC technology for light duty diesel engines. The BLUETEC technology contains an optimized diesel engine and combustion system, an aftertreatment system with DOC, DPF and an active SCR catalyst with AdBlue Dosing System and an enhanced ECU functionality and calibration. For fulfilling the world strongest emission limits of the US legislation there have to be solutions developed for the handling of AdBlue under cold climate below -11°C, managing the refilling event, and the onboard diagnostic. To ensure the emission stability over full useful life on high NOx conversions level, intensive testing of the catalyst technology had to be done. In addition there are self learning functionalities for adapting the dosing strategy to ensure the maximum NOx performance.
Technical Paper

Model-based Optimization of Catalyst Zoning in Diesel Particulate Filters

2008-04-14
2008-01-0445
Catalyzed wall-flow particulate filters are increasingly applied in diesel exhaust after-treatment for multiple purposes, including low-temperature catalytic regeneration, CO and hydrocarbon conversion, as well as exothermic heat generation during forced regeneration. In order to optimize Precious Metals usage, it may be advantageous to apply the catalytic coating non-uniformly in the DPF, a technology referred to as “catalyst zoning”. In order to simulate the behavior of such a filter, one has to consider coupled transport-reaction modeling. In this work, a previously developed model is calibrated versus experimental data obtained with full-scale catalyzed filters on the engine dynamometer. In a next step, the model is validated under a variety of operating conditions using engine experiments with zoned filters. The performance of the zoned catalyst is analyzed by examining the transient temperature and species profiles in the inlet and outlet channels.
Technical Paper

Sensor for Directly Determining the State of a NOx Storage Catalyst

2008-04-14
2008-01-0447
In order to control NOx reduction with NOx storing lean NOx traps (LNT), a gas sensor downstream of the LNT is presently preferred. It is a disadvantage that no means are available to gauge directly the LNT NOx loading level and the catalyst quality. The presented novel sensor consists of interdigital electrodes that are deposited on a planar substrate. On its reverse side, a temperature sensor is applied. Both sides are covered with the original catalyst coating, allowing detecting directly electrical impedance and temperature of the coating. Such sensors were integrated in different positions of an LNT. It is shown in synthetic exhausts as well as in engine tests that in-situ measurements of the electrical impedance of the LNT coating are appropriate to determine directly the catalyst status. Hence, the local degree of NOx loading as well as the local regeneration status can be measured. Furthermore, sulfur poisoning, desulfurization, and thermal ageing can be directly seen.
Technical Paper

Investigations on Chemical Ageing of Diesel Oxidation Catalysts and Coated Diesel Particulate Filters

2010-04-12
2010-01-1212
For medium- and heavy-duty diesel engines, the development of new catalyst technologies and particulate filters is necessary to fulfill increasingly stringent emission regulations. An important aspect is the durability of the after-treatment system and therefore its efficiency over lifetime. Lubrication oil additives contain components such as phosphorous or zinc to ensure engine durability. Diesel oxidation catalyst (DOC) and coated diesel particulate filter (cDPF) catalytic coatings are negatively influenced by contamination on the surface with these components (chemical ageing). The components have a negative impact on the exhaust after-treatment systems performance. Additionally the cDPF is filled with oil ash. Engine tests are conducted to analyze the effect of lubrication oil additives on after-treatment system performance. In one study, lubrication oil with increased sulfur ash content is used.
Technical Paper

Numerical Simulation of the Flow through an Alternator inside an Engine Compartment of a Passenger Car

2009-10-01
2009-01-3068
In this study the numerical simulation of the flow through an alternator inside an engine compartment of a passenger car is investigated. Specifically the interaction of the flow through the alternator with the flow through the engine compartment is explored in detail. The results are compared with a corresponding numerical simulation of an alternator in a surrounding of a test facility and with a numerical simulation of the flow through an engine compartment without taking into account the internal flow through the alternator. Finally the air temperature near the alternator and also the temperature of some components inside the alternator are compared with experimental values measured during a typical load case used for the thermal protection of the passenger car.
Technical Paper

Standardization of Wiring Harness Data Formats between Truck OEMs and Suppliers

2011-09-13
2011-01-2270
The continuously integration of electrics and electronics (EE) in the last decades is one of the main key drivers for innovation and business success of the Automotive OEMs. This is also applicable for truck manufacturers. On the other side factors like the rising vehicle complexity, number of variants and the warranty costs for EE issues are increasing the pressure on the engineering teams responsible for the mechatronic systems. To address these issues one of the key activities in the European market (focus on Germany) during the last decade was to introduce industry-wide standards for the data transfer of wiring harness data between OEM and harness supplier. In this paper the benefits and technical background of using the standards KBL and KOMP formats within the MB-Trucks brand will be presented. Moreover the role of the Information Technology (IT) will be explained in detail.
Technical Paper

Development of Energy Management Strategies and Analysis with Standard Drive Cycles for Fuel Cell Electric Vehicles

2012-09-10
2012-01-1609
In order to reduce fuel consumption in Fuel Cell Electric Vehicles, effective distribution of power demand between Fuel Cell and Battery is required. Energy management strategies can improve fuel economy by meeting power demand efficiently. This paper explains development of various energy management strategies for Fuel Cell Electric Vehicle with Lithium Ion Battery. Drive cycles used for optimization and analysis of the strategies are New European Drive cycles (NEDC), Japanese Drive cycles (JAP1015), City Drive cycles, Highway Drive cycles (FHDS) and Federal Urban Drive cycles (FUDS). All Fuel consumption and ageing calculations are done using backward model implemented in MATLAB/SIMULINK.
Technical Paper

Modeling of Injected Diesel Fuel Conversion and Heat Release in Oxidation Catalyst: 3D-CFD & 1D Channels Approach

2012-04-16
2012-01-1293
A system for controlled heat generation in exhaust pipeline is studied, consisting of fuel injector and oxidation catalyst (plus connecting pipes). A 3D-CFD software (StarCD) coupled with a tailored 1D model of catalytic monolith channel (XMR) are employed for simulations of realistic, fully 3D system geometry. Exhaust gas flow, fuel injection, and distribution at the catalyst inlet is solved by 3D-CFD, while the processes inside individual representative channels are simulated by the effective 1D model. The 3D-CFD software calls iteratively the 1D channel model with proper boundary conditions and solves 3D temperature profile over the monolith, utilizing local enthalpy fluxes (including gas-solid heat transfer and reaction enthalpy) calculated by the 1D channel model. Seven representative hydrocarbons are used for characterisation of Diesel fuel composition with respect to catalytic oxidation kinetics.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Journal Article

Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment

2013-04-08
2013-01-1064
NH₃/urea SCR is a very effective and widely used technology for the abatement of NOx from diesel exhaust. The SCR mechanism is well understood and the catalyst behavior can be predicted by mathematical models - as long as operation above the temperature limit for AdBlue® injection is considered. The behavior below this level is less understood. During the first seconds up to minutes after cold start, complete NOx abatement can be observed over an SCR catalyst in test bench experiments, together with a significant increase in temperature after the converter (ca. 100 K). In this work these effects have been investigated over a monolith Cu-zeolite SCR catalyst. Concentration step experiments varying NO, NO₂ and H₂O have been carried out in lab scale, starting from room temperature. Further, the interaction of C₃H₆ and CO with NOx over the SCR has been investigated.
X