Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Client/Server Architecture-Managing New Technologies for Automotive Embedded Systems-A Joint Project of Daimler-Benz and Ibm

1998-10-19
98C014
This paper presents an approach to the design of automotive applications based on the client/server architecture, which has been well established in office automation. The basic client/server model is first discussed in the context of automotive requirements. This new function oriented approach is then compared to the previous, device oriented approach. After the introduction of basic components the communication mechanism is discussed with regard to the fundamental procedures, data representation and protocol implementation. Its usage is then explained by an example. Finally, after presenting the results of this study, there is an outlook to future work as well as to possible collaboration with others partners in order to achieve further standardization.
Technical Paper

Codesign in Automotive Electronics

1998-10-19
98C048
The design of automotive electronics is a highly cooperative, distributed process between car manufactures and suppliers. Due to significant increase of quality, cost, and time to market demands, several initiatives have been founded over the last years to address the increasing demand for standardization both for automotive electronics and vehicle based software. The German MSR consortium has concentrated on design tools and information exchange between manufacturers and suppliers, whereas the OSEK/VDX consortium has concentrated on the establishment of basic software components for open system architectures. To address future demands, these activities have to be consolidated and complemented by initiatives addressing the systematic improvement of the concurrent design processes as well as the appropriate qualification of engineering personnel.
Technical Paper

Reduction of Hydrocarbon Emissions from SI-Engines by Use of Carbon Pistons

1995-10-01
952538
The use of pistons made of fine grain carbon was investigated in a spark-ignition engine within a European Community funded research project (TPRO-CT92-0008). Pistons were designed and manufactured and then tested in a single cylinder engine. Due to the carbon material's lower coefficient of thermal expansion the top land clearance between piston and cylinder can be reduced by a factor of three in comparison to standard aluminium designs. Under steady-state part-load operating conditions the emission of unburned hydrocarbons can be reduced by more than 15% compared to aluminium pistons, without significant penalties in NOx-emissions. Simultaneously, a small improvement in fuel economy of about 2% is observed. At full-load blow-by leakage flow is reduced by more than 50%. The piston crown temperature is about 30°C higher with the carbon piston than with the standard aluminium piston, due to the lower thermal conductivity of the carbon material.
X