Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Model Based Reusable and Reliable Software Validation for Functional Coverage using Virtual ECUs

2007-04-16
2007-01-1742
In embedded software world, development and testing are becoming far more complex with growing functionality and fail safe strategies. As a result of that, model-based software development is getting increasingly popular in capturing the functional requirements and auto generating the code from these validated models to avoid any functional deficiency. However, the complexity in the model may not be correctly interpreted by the code generation tool and may result to an incorrect code behavior. In this paper, a methodology has been proposed and implemented to validate the generated code against the models. Simulation test scripts are recorded in the modeling environment to generate the desired set of test inputs. These input scripts are designed to get complete transition and state exposure to maximize the functional coverage. With these test scripts, expected outputs are recorded for downstream validation in the simulation environment with mature models.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Multi-Mannequin Coordination and Communication in Digital Workcells

2003-06-17
2003-01-2197
It is commonly known that in an automotive manufacturing assembly line several workers perform either a common task or a number of different tasks simultaneously, and there is a need to represent such a multi-worker operation realistically in a digital environment. In the past years, most digital human modeling applications were limited only in a single worker case. This paper presents how to simulate multi-worker operations in a digital workcell. To establish an effective communication and interaction between the mannequins, some existing commercial software package has provided a digital input/output mechanism. The motion for each mannequin is often programmed independently, but can be interrupted anytime by the other digital human models or devices via a communication channel.
Technical Paper

Side Window Buffeting Characteristics of an SUV

2004-03-08
2004-01-0230
Buffeting is a wind noise of high intensity and low frequency in a moving vehicle when a window or sunroof is open and this noise makes people in the passenger compartment very uncomfortable. In this paper, side window buffeting was simulated for a typical SUV using the commercial CFD software Fluent 6.0. Buffeting frequency and intensity were predicted in the simulations and compared with the corresponding experimental wind tunnel measurement. Furthermore, the effects of several parameters on buffeting frequency and intensity were also studied. These parameters include vehicle speed, yaw angle, sensor location and volume of the passenger compartment. Various configurations of side window opening were considered. The effects of mesh size and air compressibility on buffeting were also evaluated. The simulation results for some baseline configurations match the corresponding experimental data fairly well.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

Estimation Of Damping Loss Factors By Using The Hilbert Transform And Exponential Average Method

2001-04-30
2001-01-1408
The damping loss factor of a structural panel plays a significant role in its vibro-acoustic performance. The objective of this paper is to present a new procedure for evaluating the damping loss factors of these panels. Traditionally, the damping loss factors are determined by using the decay rate of the decay curves which are experimentally obtained from the structure. However, this is time consuming and the accuracy is limited by fluctuations in the decay curve. In this paper, the envelope signal of each decay curve is determined through its Hilbert transform, and the remaining small fluctuations in the envelope signal are further smoothed out by the exponential average method. Finally, the damping loss factor is estimated based on the smoothed envelope signal of each decay curve. A computer program has been developed to implement this procedure. It is shown that this procedure improves both accuracy and efficiency of the decay rate method for estimating damping loss factor.
Technical Paper

USCAR Traction Test Methodology for Traction-CVT Fluids

2002-10-21
2002-01-2820
A traction test machine, developed for evaluation of traction-CVT fluids for the automotive consortium, USCAR, provides precision traction measurements to stresses up to 4 GPa. The high stress machine, WAMhs, provides an elliptical contact between AISI 52100 steel roller and disc specimens. Machine stiffness and positioning technology offer precision control of linear slip, sideslip and spin. A USCAR traction test methodology includes entrainment velocities from 2 to 10 m/sec and temperatures from -20°C to 140°C. The purpose of the USCAR machine and test methodology is to encourage traction fluid development and to establish a common testing approach for fluid qualification. The machine utilizes custom software, which provides flexibility to conduct comprehensive traction fluid evaluations.
Technical Paper

Stamping Simulation in Pentium PC and Linux Environment

2003-03-03
2003-01-0691
This paper describes the performance improvement and cost savings achieved by the Stamping Technology Department at DaimlerChrysler Corporation (Chrysler group), in migrating from Unix workstations with RISC technology to Linux PCs with Intel Pentium technology. Performance comparisons of various engineering applications running on these two system configurations are analyzed. The major aspects such as hardware configuration, operating system, software availability, compatibility, reliability, accuracy and consistency of simulation results are discussed. The improvement in computing speed and deviations in simulation results between MPP LS-Dyna and SMP LS-Dyna are presented.
Technical Paper

Model Based Development and Auto Testing: A Robust Approach for Reliable Automotive Software Development

2006-04-03
2006-01-1420
Automotive electronics and software is getting complex day by day. More and more features and functions are offered and supported by software in place of hardware. Communication is carried out on the CAN bus instead of hard wired circuits. This architectural transition facilitates lots of flexibility, agility and economy in development. However, it introduces risk of unexpected failures due to insufficient testing and million of possible combinations, which can be created by users during the life time of a product. Model based development supports an effective way of handling these complexities during simulation and also provide oracle for its validation. Based on priorities and type of applications, test vectors can be auto generated and can be used for formal verification of the models. These auto-generated test vectors are valuable assets in testing and can be effectively reused for target hardware (ECU) verification.
X