Refine Your Search

Topic

Search Results

Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Technical Paper

A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems

2001-03-05
2001-01-0959
Lithium-based battery technology offers performance advantages over traditional battery technologies at the cost of increased monitoring and controls overhead. Multiple-cell Lead-Acid battery packs can be equalized by a controlled overcharge, eliminating the need to periodically adjust individual cells to match the rest of the pack. Lithium-based based batteries cannot be equalized by an overcharge, so alternative methods are required. This paper discusses several cell-balancing methodologies. Active cell balancing methods remove charge from one or more high cells and deliver the charge to one or more low cells. Dissipative techniques find the high cells in the pack, and remove excess energy through a resistive element until their charges match the low cells. This paper presents the theory of charge balancing techniques and the advantages and disadvantages of the presented methods.
Technical Paper

LIN Bus and its Potential for Use in Distributed Multiplex Applications

2001-03-05
2001-01-0072
The increasing features and complexity of today's automotive architectures are becoming increasingly difficult to manage. Each new innovation typically requires additional mechanical actuators and associated electrical controllers. The sheer number of black boxes and wiring are being limited not by features or cost but by the inability to physically assemble them into a vehicle. A new architecture is required which will support the ability to add new features but also enable the Vehicle Assembly Plants to easily assemble and test each subsystem. One such architecture is a distributed multiplex arrangement that reduces the number of wires while enabling flexibility and expandability. Previous versions have had to deal with issues such as noise immunity at high switching currents. The LIN Bus with its low cost and rail-to-rail capability may be the key enabling technology to make the multiplexed architecture a reality.
Technical Paper

Comparative Study of Hybrid Powertrain Strategies

2001-08-20
2001-01-2501
Hybrid electric vehicles have the potential to reduce air pollution and improve fuel economy without sacrificing the present conveniences of long range and available infrastructure that conventional vehicles offer. Hybrid vehicles are generally classified as series or parallel hybrids. A series hybrid vehicle is essentially an electric vehicle with an on-board source of power for charging the batteries. In a parallel hybrid vehicle, the engine and the electric motor can be used to drive the vehicle simultaneously. There are various possible configurations of parallel hybrid vehicles depending on the role of the electric motor/generator and the engine. In this paper, a comparative study of the drivetrains of five different hybrid vehicles is presented. The underlying design architectures are examined, with analysis as to the tradeoffs and advantages represented in these architectures.
Technical Paper

An Analytical Assessment of Rotor Distortion Attributed to Wheel Assembly

2001-10-28
2001-01-3134
The lateral runout of disc brake corner components can lead to the generation of brake system pulsation. Emphasis on reducing component flatness and lateral runout tolerances are a typical response to address this phenomenon. This paper presents the results of an analytical study that examined the effect that the attachment of the wheel to the brake corner assembly could have on the lateral distortion of the rotor. An analysis procedure was developed to utilize the finite element method and simulate the mechanics of the assembly process. Calculated rotor distortions were compared to laboratory measurements. A statistical approach was utilized, in conjunction with the finite element method, to study a number of wheel and brake corner parameters and identify the characteristics of a robust design.
Technical Paper

Use of Fuzzy Logic in Wheel Slip Assignment - Part II: Yaw Rate Control with Sideslip Angle Limitation

2002-03-04
2002-01-1220
This paper is an extension to the work presented in part I [1]. The control objective is still the same - use a logic based control design technique to assign a wheel slip, λ, to each corner of a vehicle, to track overall desired vehicle dynamics. As in part I, a fuzzy logic based controller is the primary control, with additional logic to select the inside/outside classifiers for the wheels. In part I, only the reduction of yaw rate error, e, was considered. It was shown that, although the overall system had satisfactory performance, there was slight deteriorization in the tracking performance when trying to compensate through a significant vehicle sideslip angle, β. In this paper, additional logic is introduced into the control to limit the vehicle sideslip angle, β; thus, allowing for a more robust desired yaw rate, Ωd, tracking control performance. The emergency lane change maneuver is simulated to show the effectiveness of the redesigned control.
Technical Paper

Environmentally Friendly Car Wiring System

2002-03-04
2002-01-0595
Legal requirements and responsibility for the environment require improved recyclability of car components. This can be achieved by a reduction in the variety of materials used, which can be separated after use. This is being demonstrated for wiring harnesses using a new hook and loop based fastening system. Easier assembly and disassembly, elimination of fixation holes in the car body, and improved serviceability can lead to considerable cost reductions. Field experience on test cars will be available at a later date.
Technical Paper

Paradox of Miniaturization Trend Versus Hybrid Electrical Vehicle Requirements

2012-10-02
2012-36-0262
In recent years, a number of key influences are contributing to accelerate technological innovation in the automotive industrial sector. Concerns about renewable energy resource, fossil-fuels crises and higher gasoline prices, global warming awareness and environmental impacts, scarcity of minerals/metals and electronics demands rising are some of the major challenges for vehicle automakers and their suppliers. The interest in alternative fuel vehicles, especially hybrid-electrical vehicles (HEV) or renewable energy power concepts for road vehicles has become intensified and represents a significant area of research and development in order to meet nowadays global demands. However because of Hybrid Vehicles unique Power Supply System the electrical/electronic architecture (E/E) is sophisticated, requesting more robust sealing and a particular wiring harness components, such as connector, terminals and cables.
Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
Technical Paper

Zero Resistance Technology (ZRT)

2005-11-22
2005-01-4109
Delphi's Zero Resistance Technology (ZRT) is a revolutionary new product/process that enables the reduction of mass and volume from a traditional wiring assembly. ZRT is defined as a minimal (zero) resistance change over time. The ZRT product is an electrical/electronic connection system which provides a viable solution for high density and limited space wiring applications. The ZRT process is a semi-automated wiring harness manufacturing system with flexibility to produce harnesses to the customer demand.
Technical Paper

Energy Harvesting as Strategy for Reducing Vehicles Emissions

2012-10-02
2012-36-0114
In vehicular mobility context, it is extremely important for the environmental sustainability that the available energy will be used as efficiently as possible, both in the use of internal combustion engines (ICE) as powertrain, as well in the application of Hybrid and Electric Vehicle Motors (HEV/EV). In this comparison, ICE has a lower efficiency when compared to electric motors, wasting much of the potential energy of the fuel in form of heat and noise. On the other hand, the electric vehicles face limitation in autonomy and recharge time, demanding for a more efficient use of energy stored in batteries. This study aims to present emerging technologies for reuse of energy within the automotive context, originally known as “Energy Harvesting” and “Renewable Energies”.
Technical Paper

Resistance Welding for Automotive Wiring Harness Connection - Small Gauge Cables

2012-10-02
2012-36-0153
Miniaturization is an important trend in many technology segments, once it can enable innovative applications generating new markets. This trend was begun in electronics industry after World War II and has spawned changes into automotive sector also. For Automotive Wiring Harness, miniaturization is clearly presented in most of the components, mainly because of its benefits like the potential of mass reduction, cost reduction and efficiency improvement. Furthermore the main voice of customer points to cable gauge reduction that represents a considerable challenge for connection manufacturing process due to quality control limitations presented by conventional crimp process for 0,35 [mm₂] cables and smaller. According to that, the scope of this article is to present, in details, a manufacturing process optimization for an alternative and more robust technology of joining copper stranded cables to tin brass terminals used on automotive wiring harness, Resistance Welding.
Technical Paper

Estimation of Vehicle Side Slip Angle and Yaw Rate

2000-03-06
2000-01-0696
An algorithm for estimation of vehicle yaw rate and side slip angle using steering wheel angle, wheel speed, and lateral acceleration sensors is proposed. It is intended for application in vehicle stability enhancement systems, which use controlled brakes or steering. The algorithm first generates two initial estimates of yaw rate from wheel speeds and from lateral acceleration. A new estimate is subsequently calculated as a weighted average of the two initial ones, with the weights proportional to confidence levels in each estimate. This preliminary estimate is fed into a closed loop nonlinear observer, which generates the final estimate of yaw rate along with estimates of lateral velocity and side slip angle. Parameters of the observer depend on the estimated surface coefficient of adhesion, thus providing adaptation to changes in road surface coefficient of adhesion.
Technical Paper

Profitable Recycling of Automotive Wiring Harnesses

2000-03-06
2000-01-0736
Legal requirements, especially in the European Union, rising concern about our environment and economic reasons force us to look at End of Life Vehicles (ELV's) more critically. This paper describes some projects where recycling technologies have been developed showing clearly that recycling can be profitable. The projects demonstrate the recycling of Polyvinyl Chloride (PVC) insulation in automotive wiring, a separation technology for different plastic materials by melting point, the treatment of laminated materials like flexible printed circuits, some ideas of fastening systems, suited for disassembly and several basic rules for making recycling easier and profitable.
Technical Paper

An Engine Coolant Temperature Model and Application for Cooling System Diagnosis

2000-03-06
2000-01-0939
A coolant temperature model of an internal combustion engine has been formulated to meet the new On-Board Diagnostics II (OBD II) requirement for coolant temperature rationality. The model utilizes information available within the production Engine Control Module (ECM). The temperature prediction capability has been tested for various “real-world” driving conditions and cycles along with regulated drive cycles. The model can be calibrated to find the appropriate timing for initiation of a diagnostic algorithm for engine cooling system and Coolant Temperature Sensor (CTS) faults. A diagnostic scheme has been developed to detect and isolate various types of cooling system failures using engine soak time information available from a low power timer in the ECM.
Technical Paper

Dual-Voltage Electrical System with a Fuel Cell Power Unit

2000-08-21
2000-01-3067
Fuel cells show great promise in generating electrical power for a variety of uses. In the automotive realm, one focus has been on the use of fuel cells for primary vehicle propulsion. Another emerging application is the fuel cell as the primary provider of electrical power to the vehicle, augmenting or replacing the traditional alternator, while producing higher power levels. The advantage of the fuel cell in this role is that the fuel cell operation is de-coupled from that of the engine. High power levels can be achieved independent of engine speed and power can be produced without the engine running. This paper examines the application of a fuel cell auxiliary power unit (APU) to a dual-voltage 42V/14V automotive electrical system meeting the evolving 42V PowerNet specifications. An architecture for this electrical system is presented, followed by a sizing analysis to properly match the fuel cell stack to the voltage of the PowerNet and to a 42V battery pack.
Technical Paper

Batteries for 42/14 Volt Automotive Electrical Systems

2000-08-21
2000-01-3065
The automotive industry is moving to a higher voltage for the electrical system. This change will occur because the total electrical power required by the vehicles will increase to a level where the current requirements at 14 volts will be impractical. Some of the new loads will change the duty cycle of the battery. The most notable change is the proposed start/stop mode of vehicle operation where the engine is stopped and restarted frequently to avoid prolonged operation at idle. An additional feature would be to use an electric motor to assist in acceleration and/or to actually launch the vehicle. This paper addresses the changes in battery requirements brought on by these new features. A means of analysis for choosing the appropriate battery technology is presented. We also propose a life test to establish a benchmark for current battery technology when it is used in a new duty cycle.
Technical Paper

The Effectiveness of Adjustable Pedals Usage

2000-03-06
2000-01-0172
This study evaluates the comfort benefits of adjustable pedals by determining their effect on the distance between the occupant and steering wheel, occupant posture and foot kinematics. For the study, 20 volunteers were tested in a small and large vehicle equipped with adjustable pedals. Twenty volunteers were tested in a small and large vehicle at 3 pedal positions: normal, comfortable and maximum tolerable. In the small car, the decrease in ankle-to-steering wheel distance between the normal and comfortable position was higher in the short-statured group than the medium group. The mean change in chest-to-steering wheel distance was about 50 mm in the medium and in the order of 40 mm in the short group. The seatback angle increased by 2° in the medium group and decreased by 3° in the short group. In the large car, the decrease in ankle-to-steering wheel distance between comfortable and the normal position was about 70 mm in the short-statured and medium group.
Technical Paper

Globalization of the Design for Manufacturability/Assembly Process within the Automotive Wiring Assembly Business

1999-03-01
1999-01-0052
Automotive wiring assembly design and manufacturing has evolved from a locally based business to a global business. It is common today to engineer the design of a wiring assembly in one region of the world, to manufacture it in a second region, and to assemble it into the vehicle in a third region. This creates a need for global collaboration, training and communications. Design for Manufacturability (DFM) is a tool that can aid in this, in developing common processes globally, and reducing the cost and design complexity of the product in the early design stages. To develop a global DFM process, an organization must develop and implement a strategy. This paper will review the approach that an automotive wiring assembly supplier adopted. It will enumerate the benefits of developing a global Design for Manufacturability process, selecting a champion, and using a twelve-step plan to integrate DFM into each region.
Technical Paper

Barometric Pressure Estimator for Production Engine Control and Diagnostics

1999-03-01
1999-01-0206
A Barometric Pressure Estimator (BPE) algorithm was implemented in a production speed-density Engine Management System (EMS). The BPE is a model-based, easily calibrated algorithm for estimating barometric pressure using a standard set of production sensors, thereby avoiding the need for a barometric pressure sensor. An accurate barometric pressure value is necessary for a variety of engine control functions. By starting with the physics describing the flow through the induction system, an algorithm was developed which is simple to understand and implement. When used in conjunction with the Pneumatic and Thermal State Estimator (PSE and TSE) algorithms [2], the BPE requires only a single additional calibration table, generated with an automated processing routine, directly from measured engine data collected at an arbitrary elevation, in-vehicle or on a dynamometer. The algorithm has been implemented on several different engines.
X