Refine Your Search

Topic

Search Results

Video

New Energy Vehicle (NEV) Progress in China

2012-03-29
Vehicle electrification is shaping the future of automotive mobility in terms of automotive power and propulsion. The market for New Energy Vehicles (HEV/PHEV/REEV/EV) as well as clean vehicle technologies is expected to grow steadily driven by government regulations mandating increased fuel economy and lower emissions. The fastest growth in this market will be in Asia Pacific, most notably China. The Chinese government has made its intentions clear on how important it considers the development and consumer purchase of hybrid and electric vehicles. The mandate is that by year 2012, vehicle manufacturers produce at least 500,000 units (or 5%) per year of their total output as hybrid and/or electric. All Chinese vehicle manufacturers must have at least one HEV or EV model in the market by the same year. Thus far China has invested over US$3.5 billion to stimulate the production of NEVs and the necessary infrastructure to support them.
Journal Article

Systems to Silicon: A Complete System Approach to Power Semiconductor Selection for Environmentally Friendly Vehicles

2010-10-05
2010-01-1989
A complete system approach to power semiconductor analysis and selection is set forth in this paper. In order to address design overkill, a suitable power profile across the desired drive schedule is obtained through vehicle simulation in lieu of worse case operating conditions. The representative profile is then applied to detailed models of the inverter, power device, and power device thermal stack-up in order to predict worse case, silicon junction temperature rise. The simulation stream includes a closed silicon thermal loop that leads to more accurate power loss and junction temperature calculations. The models are combined and exercised in a single platform for ease of integration and fast simulation. Herein, the methods will be applied to a working example of an inverter for motor drives, and analytical results will be reviewed.
Journal Article

Estimation Algorithms for Low Pressure Cooled EGR in Spark-Ignition Engines

2015-04-14
2015-01-1620
Low-pressure, Cooled Exhaust Gas Recirculation (LPC EGR) brings significant fuel economy, NOx reduction and knock suppression benefits to a modern, boosted, downsized Spark Ignition (SI) engine. As a prerequisite to design an engine control system for LPC EGR, this paper presents development of a set of estimation algorithms to accurately estimate the flow rate, pressure states and thermal states of the LPC EGR-related components.
Journal Article

Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM

2012-04-16
2012-01-0384
A gasoline compression-ignition combustion system is being developed for full-time operation over the speed-load map. Low-temperature combustion was achieved using multiple late injection (MLI), intake boost, and moderate EGR for high efficiency, low NOx, and low particulate emissions. The relatively long ignition delay and high volatility of RON 91 pump gasoline combined with an advanced injection system and variable valve actuation provided controlled mixture stratification for low combustion noise. Tests were conducted on a single-cylinder research engine. Design of Experiments and response surface models were used to evaluate injection strategies, injector designs, and various valve lift profiles across the speed-load operating range. At light loads, an exhaust rebreathing strategy was used to promote autoignition and maintain exhaust temperatures. At medium loads, a triple injection strategy produced the best results with high thermal efficiency.
Technical Paper

Estimation and Control of Turbocharged Engines

2008-04-14
2008-01-1013
This paper presents production Engine Management System algorithms for Estimation and Control of Turbocharged engines with the following qualities; 1) Model based ensuring applicability at all ambient conditions, 2) Does not require Turbine data for calibration 3) Estimation logic form allows reuse for control applying predictive values for response and stability 4) Applies to all Waste-Gate types; passive and active, pneumatic and electrical, 5) Does not require Waste-Gate position measurement 5) Applies to engines with Variable Geometry Turbine.
Technical Paper

A New Technique for Residual Gas Estimation and Modeling in Engines

2008-04-14
2008-01-0093
This paper addresses the longstanding problems of residual gas measurement during engine dynamometer testing, and of real-time residual modeling for engine control applications. A new method is described which is simple to apply, requiring only currently standard calibration test cell instrumentation. Experimental validation against measurements using direct in-cylinder CO2 sampling is presented, and a comprehensive error sensitivity analysis is included. A real-time capable, controls-oriented model is also described. Its accuracy is assessed by comparison to engine-simulation-generated residual values after using these values to determine the model parameters.
Technical Paper

In-Vehicle Networking Technology for 2010 and Beyond

2010-04-12
2010-01-0687
This paper is an overview of the current state (calendar year 2010) of in-vehicle multiplexing and what pertinent technologies are emerging. Usage and trends of in-vehicle networking protocols will be presented and categorized. The past few years have seen a large growth in the number and type of communication buses used in automobiles, trucks, construction equipment, and military, among others. Development continues even into boating and recreation vehicles. Areas for discussion will include SAE Class A, B, C, Diagnostics, SafetyBus, Mobile Media, Wireless, and X-by-Wire. All existing mainstream vehicular multiplex protocols (approximately 40) are categorized using the SAE convention as well as categories previously proposed by this author. Top contenders will be pointed out along with a discussion of the protocol in the best position to become the industry standard in each category.
Technical Paper

Effects of B20 Fuel and Catalyst Entrance Section Length on the Performance of UREA SCR in a Light-Duty Diesel Engine

2010-04-12
2010-01-1173
The current study focused on the effects B20 fuel (20% soybean-based biodiesel) and SCR entrance shapes on a light-duty, high-speed, 2.8L common-rail 4-cylinder diesel engine, at different exhaust temperatures. The results indicate that B20 has less deNOX efficiency at low temperature than ULSD, and that N₂O emission need to be characterized as well as NH₃ slip. If a mixer and enough mixing length are used, longer divergence section does not improve the deNOX efficiency significantly under the speed ranges tested.
Technical Paper

Estimation of Vehicle Roll Angle and Side Slip for Crash Sensing

2010-04-12
2010-01-0529
Estimation of vehicle roll angle, lateral velocity and side slip angle for the purpose of crash sensing is considered. Only roll rate sensor and the sensors readily available in vehicles equipped with ESC (Electronic Stability Control) systems are used in the estimation process. The algorithms are based on kinematic relationships, thus avoiding dependence on vehicle and tire models, which minimizes tuning efforts and sensitivity to parameter variations. The estimate of roll angle is obtained by blending two preliminary estimates, each valid in different conditions, in such a manner that the final estimate continuously favors the more accurate one. The roll angle estimate is used to compensate the gravity component in measured lateral acceleration due to vehicle roll or road bank angle. This facilitates estimation of lateral velocity and side slip angle from fundamental kinematic relationships involving the gravity-compensated lateral acceleration, yaw rate and longitudinal velocity.
Technical Paper

Risk Reducing Product and Process Design During New Product Development

2010-04-12
2010-01-0391
In today's dynamic automotive environment, reducing the lead-time to introduce new product technologies to the market place can be a key competitive advantage. Employing proactive risk reduction techniques to define key product and process relationships is essential to enhance the production worthiness of a design while it is still in the advanced development phase of the program. This paper describes how Delphi Powertrain Systems applied the Shainin proactive risk reduction methodology in advanced product development to focus resources on understanding and mitigating the risk associated with the development of a new Delphi ammonia sensor. Organizational and technical strategies to accelerate profound knowledge capture, along with corresponding test results, are presented and discussed.
Technical Paper

Acoustic Noise Assessment of Gasoline Direct Injection (GDi) Components Using Taguchi Methods - Application to GDi High-Pressure Pumps

2010-04-12
2010-01-0586
Gasoline Direct Injection (GDi) system is a relatively new technology. In early implementations, its major components, i.e. high pressure fuel pump, injectors, and fuel rails, emit objectionable acoustic noise during normal operation. This paper will focus on making an objective comparison (assessment) of acoustic noise emitted by several cam-driven high pressure fuel pumps during their normal operation, especially at engine idle. Taguchi robust engineering methods will be used to conduct the robust assessment study of six GDi high-pressure pumps. A-weighted total sound pressure level (SPL), processed from two free-field microphones around each pump, will be used as the main function in the Taguchi design of experiments (DOE).
Technical Paper

Nanotechnology Applications in Future Automobiles

2010-04-12
2010-01-1149
It is rare for a single technology to have the power to dramatically influence almost every major industry in the world. Nanotechnology falls into this category and offers fundamentally new capabilities to architect a broad array of novel materials, composites and structures on a molecular scale. This technology has the potential to drastically re-define the methods used for developing lighter, stronger, and high-performance structures and processes with unique and non-traditional properties. This paper focuses on some of the automotive applications for nanotechnology and showcases a few of them that are believed to have the highest probability of success in this highly competitive industry. No discussion of nanotechnology is complete without touching upon its health and environmental implications.
Technical Paper

Open Innovation: An Automotive Supplier's Perspective

2010-10-19
2010-01-2340
In order to survive and thrive in harsh economic environments and capitalize on opportunities driven by the current regional and global needs for Safe, Green, and Connected solutions, companies are required to constantly create/innovate new products while shortening their time to market. These new requirements cannot be met with the traditional closed innovation approach. A new approach calls for working with “others” in order to benefit from complementary resources. Open Innovation is a means to empower collaborative innovation aimed at meeting the new requirements for fast paced, cost effective and yet innovative technology. This paper presents the key elements of Open Innovation from its birth to its implementation. Firstly, it describes Henry Chesbrough's OI model. Secondly, it suggests that a successful implementation of an OI model can be achieved though the application of Everett Rogers' theory of Diffusion of Innovations.
Technical Paper

Individual Cylinder Fuel Control for Imbalance Diagnosis

2010-04-12
2010-01-0157
This paper identifies a select method for performing cylinder imbalance measurement, correction and diagnosis. The impetus is to address new U.S. Federal regulations that require the detection of excessive cylinder air-fuel ratio (AFR) imbalance, and doing so requires the foundational ability to measure and preferably remove cylinder imbalance via active closed-loop control. This function is called Individual Cylinder Fuel Control (ICFC). ICFC starts by extracting cylinder-imbalance information from the front oxygen sensor, and that information comes in the form a of continuous data stream. That stream is then parsed to create virtual sensors- one for each cylinder. Each virtual sensor acts as an imbalance or error signal which ICFC uses to correct and learn via feedback and feed-forward control for each cylinder. The cylinder imbalance diagnostic is enabled by the presence of ICFC.
Technical Paper

Non-contact Pressure Switch Package Optimization for Improved Reliability of Diagnostics in Automatic Transmissions

2010-04-12
2010-01-0187
Modern automatic transmissions use various methods to estimate fluid line pressures in order to improve shift quality and reduce energy losses. These estimations lead to improvements in fuel economy, customer satisfaction and reduced exhaust emissions. The further addition of pressure feedback switches improves operational knowledge by verifying when clutches have received their commanded pressures. Product reliability above the industry standard for transmission pressure switches was developed through the use of multiple FEA platforms combined with advanced design optimization software, robust optimization and Shainin® tools. In this optimized design, ferromagnetic non-contact pressure switches operate by translating fluid pressure into piston motion, isolated by a sealed proprietary diaphragm.
Technical Paper

Replacing Volumetric Efficiency Calibration Look-up Tables with Artificial Neural Network-based Algorithm for Variable Valve Actuation

2010-04-12
2010-01-0158
Signal processing incorporating Artificial Neural Networks (ANN) has been shown to be well suited for modeling engine-related performance indicators [ 1 , 2 , 3 ] that require multi-dimensional parametric calibration space. However, to obtain acceptable accuracy, traditional ANN implementation may require processing resources beyond the capability of current engine controllers. This paper explores the practicality of implementing an ANN-based algorithm performing real-time calculations of the volumetric efficiency (VE) for an engine with variable valve actuation (phasing and lift variation). This alternative approach was considered attractive since the additional degree of freedom introduced by variable lift would be cumbersome to add to the traditional multi-dimensional table-based representation of VE.
Technical Paper

Correlating Port Fuel injection to Wetted Fuel Footprints on Combustion Chamber Walls and UBHC in Engine Start Processes

2003-10-27
2003-01-3240
Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and “footprint” of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber.
Technical Paper

Low Pressure Cooled EGR Transient Estimation and Measurement for an Turbocharged SI Engine

2016-04-05
2016-01-0618
Low Pressure Cooled Exhaust Gas Recirculation (LP EGR) is an attractive technology to reduce fuel consumption for a spark-ignition (SI) engine, particularly at medium-to-high load conditions, due to its knock suppression and combustion cooling effects. However, the long LP EGR transport path presents a significant challenge to the transient control of LP EGR for the engine management system. With a turbocharged engine, this is especially challenging due to the much longer intake induction system path compared with a naturally aspirated engine. Characterizing and modeling the EGR, intake air mixing and transport delay behavior is important for proper control. The model of the intake air path includes the compressor, intercooler and intake plenum. It is important to estimate and track the final EGR concentration at the intake plenum location, as it plays a key role in combustion control. This paper describes the development of a real-time, implementable model for LP EGR estimation.
Technical Paper

Acoustic Noise Assessment of Gasoline Direct Injection Fuel Injectors Using Taguchi Methods

2011-04-12
2011-01-1216
Gasoline Direct injection (GDi) systems offer performance and /or fuel consumption advantages compared to the traditional lower pressure port fuel injected technology. One disadvantage of GDi is the higher level of audible noise produced by the high pressure GDi system components. Powertrain noise is a known warranty complaint across the automotive industry. This paper presents an objective comparison of acoustic noise emitted by eight solenoid actuated fuel injector designs during their normal operation, including at engine idle, where powertrain noise is more noticeable to the customer. Taguchi Robust Engineering methods will be used to conduct an assessment of the noise generated by various GDi fuel injector designs. Injector fixturing, measurement procedures, and their impact on reducing test-to-test measurement variation are discussed.
X