Criteria

Text:
Topic:
Affiliation:
Display:

Results

Viewing 1 to 30 of 36
2011-04-12
Journal Article
2011-01-1386
Mark Sellnau, James Sinnamon, Kevin Hoyer, Harry Husted
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
2006-04-03
Technical Paper
2006-01-0296
H. Klode, A. M. Omekanda, B. Lequesne, S. Gopalakrishnan, A. Khalil, S. Underwood, I. Husain
Electro-mechanical brakes (EMBs) are emerging as a new approach to enhance brake system features as well as braking performance. This paper takes a fresh look at the switched reluctance (SR) drive as a possible prime mover technology for EMB applications. The switched reluctance motor has attractive potential, in view of its robustness, dynamic bandwidth and fault tolerance. An overall assessment of the approach is made based on bench performance of a prototype EMB caliper with an SR drive executing typical braking patterns. It is shown that the SR motor can provide the required overall brake actuator performance. Various implementation options are examined to lower cost, with particular focus on electronic design, control algorithms and motor position sensing.
2006-04-03
Technical Paper
2006-01-0040
M. Sellnau, T. Kunz, J. Sinnamon, J. Burkhard
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
2012-04-16
Technical Paper
2012-01-0896
Feilong Liu, Gehan A. J. Amaratunga, Nick Collings, Ahmed Soliman
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation.
2006-04-03
Technical Paper
2006-01-0763
Robert D. Garrick
The purpose of this paper is to improve the understanding of the advantages of a non-contact electronic throttle control (ETC) air control valve position sensor over the potentiometer technology of contacting position sensors. The non-contact position sensing offers the industry an opportunity to take advantage of an improved ability to assess reliability of the product and utilize accelerated testing techniques with improved robustness to control system perturbations. Specifically; eliminating the contact wear failure mechanism reduces the complexity, and duration of ETC air control valve life testing and increases the robustness of the ETC system to noise factors from the control system variation.
2005-10-24
Technical Paper
2005-01-3903
Daniel G. Gauthier, Thomas H. Lichti, John H. Waller
This paper describes a robust engineering DOE (design of experiment) completed by hydraulic simulation of a Variable Cam Phaser System based on an L4 IC engine. The robust engineering study focused on the high temperature and low speed portions of overall engine operating conditions where the cam phase rates are slow and oscillation is high. The analysis included a preliminary DOE with multiple noise variables used as the control factors in order to quantify and compound the factors into just two noise levels; best and worst conditions. Following the noise DOE, a larger DOE study was completed with 16 control variables including phaser, oil control valve and various engine parameters. It was run at 3 engine rpm (signal levels), 2 noise levels, and was analyzed for 3 responses (advancing rate, retarding rate, and oscillation amplitude while holding an intermediate position). These DOE experiments determined potential gains for each design proposal.
2004-03-08
Technical Paper
2004-01-1373
Mingyu Wang, Thomas M. Urbank, Karma V. Sangwan
The present paper describes the system design for the Clear Vision auto defog system and the improvements made to the Integrated Dew Point and Glass Temperature (IDGT) sensor. The Clear Vision auto defog system has been implemented on a 2000 Cadillac DeVille. Preliminary validation tests demonstrate satisfactory performance.
2004-03-08
Technical Paper
2004-01-1586
Joseph Conover, Harry Husted, John MacBain, Heather McKee
Modern military ground vehicles are dependent not only on armor and munitions, but also on their electronic equipment. Advances in battlefield sensing, targeting, and communications devices have resulted in military vehicles with a wide array of electrical and electronic loads requiring power. These vehicles are typically designed to supply this power via a main internal combustion engine outfitted with a generator. Batteries are also incorporated to allow power to be supplied for a limited time when the engine is off. It is desirable to use a subset of the battlefield electronics in the vehicle while the engine is off, in a mode called “silent watch.” Operating time in this mode is limited, however, by battery capacity unless an auxiliary power unit (APU) is used or the main engines are restarted.
2004-10-25
Technical Paper
2004-01-3062
Julie G. Marshaus, Nicholas L. Woulf, Kathryn M. Orgish, Glenn R. Bower
The University of Wisconsin - Madison hybrid vehicle team has designed and constructed a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2003 competition. This is a multi-year project utilizing a 2002 4.0 liter Ford Explorer as the base vehicle. Wisconsin's FutureTruck, nicknamed the ‘Moolander’, weighs 2000 kg and includes a prototype aluminum frame. The Moolander uses a high efficiency, 1.8 liter, common rail, turbo-charged, compression ignition direct injection (CIDI) engine supplying 85 kW of peak power and an AC induction motor that provides an additional 60 kW of peak power. The 145 kW hybrid drivetrain will out-accelerate the stock V6 powertrain while producing similar emissions and drastically reducing fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) combined driving cycle fuel economy of 16.05 km/L (37.8 mpg).
2005-04-11
Technical Paper
2005-01-0971
Mansour Masoudi
Segmented, Silicon-Carbide Diesel Particulate Filters appear to be automotive industry's popular choice for reducing particulate emissions of Diesel Engines, particularly for light duty platforms. Since flow resistance represents an important performance feature of a filter, it is important that reasonable prediction tools for such filters are developed for use in their development, design, applications and regeneration control. A model for predicting pressure drop of segmented filters is presented here: an existing, well-accepted pressure drop model for monolithic (non-segmented) filters is customized to one for a segmented filter using a ‘weighted number of inlet channels’ based on equivalent filtration wall area of a monolithic filter. Flow resistance data collected experimentally on segmented filters are used to demonstrate the accuracy of the new model.
2005-04-11
Technical Paper
2005-01-0639
Gerard W. Malaczynski, David B. Miller, Steven L. Melby
The intensity of a combustion flame ionization current signal (ionsense) can be used to monitor and control combustion in individual cylinders during a cold engine start. The rapid detection of poor or absence of combustion can be used to determine fuel delivery corrections that may prevent engine stalls. With the ionsense cold start control active, no start failures were recorded even when the initially (prior to ionsense correction) commanded fueling had failed to produce a combustible mixture. This new dimension in fuel control allows for leaner cold start calibrations that would still be robust against the possible use of low volatility gasoline. Consequently, when California Phase 2 fuel is used, cold start hydrocarbon emissions could be lowered without the risk of an engine stall if the appropriate fuel is replaced with a less volatile one.
2005-04-11
Technical Paper
2005-01-0010
Paravila O. Jacob
Hydrogen is the most plentiful gas in the universe. However hydrogen never occurs naturally, always combines with other elements such as oxygen and carbon [1]. Hydrogen is the ultimate clean energy carrier once it is separated from other elements [11]. Moreover hydrogen can easily be generated from renewable energy sources. Hydrogen is also nonpolluting, and forms water as a harmless byproduct during the oxidation process. Safe practices in the production, storage, distribution, and use of hydrogen are essential components of a hydrogen economy [2]. A catastrophic failure in any hydrogen project could irreparably damage the entire transition strategy. The safety program element delineates the steps that the hydrogen, fuel cells & infrastructure technologies program shall ensure that all projects are performed in a safe manner.
2003-06-23
Technical Paper
2003-01-2256
Kaushik Rajashekara, Gerald T. Fattic, Harry L. Husted
Improving fuel economy, emissions, passenger comfort and convenience, safety, and vehicle performance in the automobile is resulting in the growth of electrical loads. In order to meet these electrical load demands and to meet the requirement of power generation when the engine is off, several technologies are on the horizon for on-board power generation in the vehicles. In this paper, new on-board power generation technologies based on the solid oxide fuel cell (SOFC), proton exchange membrane (PEM) fuel cell, thermo-photovoltaic (TPV) system, and diamond or carbon nanostructures are compared in terms power density, cost, and long term feasibility for automotive applications.
2004-03-08
Technical Paper
2004-01-0569
Peter J. Wezenbeek, David G. Evans, David P. Sczomak, John P. Absmeier, Gerald T. Fattic
Implementation of engine turnoff at idle is desirable to gain improvements in vehicle fuel economy. There are a number of alternatives for implementation of the restarting function, including the existing cranking motor, a 12V or 36V belt-starter, a crankshaft integrated-starter-generator (ISG), and other, more complex hybrid powertrain architectures. Of these options, the 12V belt-alternator-starter (BAS) offers strong potential for fast, quiet starting at a lower system cost and complexity than higher-power 36V alternatives. Two challenges are 1) the need to accelerate a large engine to idle speed quickly, and 2) dynamic torque control during the start for smoothness. In the absence of a higher power electrical machine to accomplish these tasks, combustion-assisted starting has been studied as a potential method of aiding a 12V accessory drive belt-alternator-starter in the starting process on larger engines.
2003-06-23
Technical Paper
2003-01-2307
Harry L. Husted
In this paper, a comparative study of the production applications of hybrid electric powertrains is presented. Vehicles studied include the Toyota Prius, Honda Insight, Toyota Estima, Toyota Crown, Honda Civic Hybrid, and Nissan Tino. The upcoming Ford Escape Hybrid and General Motors Parallel Hybrid Truck (PHT) will also be included, although advance information is limited. The goal of this paper is to look at what hybrid drivetrain architectures have actually been selected for production and what are the underlying details of these drivetrains. Since hybridizing a powertrain involves significant changes, the powertrain architectures are presented in diagram form, with analysis as to the similarities and advantages represented in these architectures. The specific hybrid functions used to save fuel are discussed. Peak power-to-weight ratio and degree of hybridization are plotted for the vehicles. System voltage versus electric power level are also plotted and analyzed.
2008-04-14
Technical Paper
2008-01-0131
Sudhakar Das
An analytical study of spray from an outwardly opening pressure swirl injector has been presented in this paper. A number of model injectors with varying design configurations have been used in this study. The outwardly opening injection process has been modeled using a modified spray breakup model presented in an earlier study. It has been observed that simulation results from the study clearly capture the mechanism by which an outwardly opening conical spray interacts with the downstream flow field. Velocity field near the tip of the injector shows that the conical streams emanating from an outwardly opening injector have the tendency to entrap air into the flow stream which is responsible for finer spray. A deviation from the optimum set of physical parameters showed a high propensity to produce large spray droplets. This study also emphasizes the importance of computational fluid dynamics (CFD) as an engineering tool to understand the complex physical processes.
2008-04-14
Technical Paper
2008-01-0439
Julie M. Galante-Fox, Donald E. Jarvis, Robert D. Garrick, Alfred J. Chen
Some Electronic Throttle Control (ETC) Air Control Valves (ACV) on automotive internal combustion engines are susceptible to icing of the throttle valve. Ice formation can result in an increase in torque required to open or close the valve. Laboratory studies were conducted to improve the understanding of throttle valve icing on electronic throttle control valves with both aluminum and composite (plastic) bodies over various bore sizes (4 cylinder to 8 cylinder engines). Study results indicated that ice compression at the bore and valve gap, not ice adhesion, is the major contributor to the ETC-ACV icing phenomenon. In addition, testing of parts with various bore sizes, orientations and surface cleanliness resulted in further understanding of the icing issue.
2008-04-14
Journal Article
2008-01-1068
David L.S. Hung, David L. Harrington, Anand H. Gandhi, Lee E. Markle, Scott E. Parrish, Joseph S. Shakal, Hamid Sayar, Steven D. Cummings, Jason L. Kramer
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
2008-04-14
Technical Paper
2008-01-1004
Peter M. Olin
A key quantity for use in engine control is the exhaust manifold pressure. For production applications it is an important component in the calculation of the engine volumetric efficiency, as well as EGR flow and residual fraction. For cost reasons, however, it is preferable to not have to measure the exhaust manifold pressure for production applications. For that reason, it is advantageous to develop a model for estimating the exhaust manifold pressure in production application software that is small, accurate, and simple to calibrate. In this paper, a mean-value model for calculating the exhaust manifold pressure is derived from the compressible flow equation, treating the exhaust system as a fixed-geometry restriction between the exhaust manifold and the outlet of the tailpipe. Validation data from production applications is presented.
2007-10-29
Technical Paper
2007-01-4071
Richard J. DuMont, Lawrence J. Cunningham, Mitchell K. Oliver, Mitchell K. Studzinski, Julie M. Galante-Fox
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
2007-10-29
Technical Paper
2007-01-4072
J. Galante-Fox, P. Von Bacho, C. Notaro, J. Zizelman
A study was conducted to investigate the effects of commercial E-85 fuel properties on Port Fuel Injector (PFI) durability performance. E-85 corrosivity, not lubricity, was identified as the primary property affecting injector performance. Relatively high levels of water, chloride and organic acid contamination, detected in commercial E-85 fuels sampled in the U.S. in 2006, were the focus of the study. Analysis results and analytical techniques for determining contaminant levels in and corrosivity of commercial E-85 fuels are discussed. Studies were conducted with E-85 fuels formulated to represent worst-case field fuels. In addition to contamination with water, chloride and organic acids, fuels with various levels of a typical ethanol corrosion inhibitor were tested in the laboratory to measure the effects on E-85 corrosivity. The effects of these E-85 contaminants on injector durability performance were also evaluated.
2008-10-20
Technical Paper
2008-21-0015
Ash Punater, Gene Ripley, Karl Schten
Worldwide regulatory demands to reduce emissions of greenhouse gases and other airborne pollutants are leading to significant changes in internal combustion engines. Many engine subsystems such as fuel injection, valvetrain, turbochargers and EGR, are being changed to address these demands. Additionally, advanced combustion modes such as HCCI are being pursued to address the key shortcomings of today's gasoline and diesel engines. Cylinder pressure based control is an enabling technology to the development and application of advanced engine subsystems and a key control element for advanced combustion modes. This paper describes a tool for rapid development of closed-loop cylinder pressure based algorithms. The Cylinder Pressure Development Controller (CPDC) is an affordable, automotive grade package containing a unique architecture enabling real-time, next engine cycle combustion feedback control.
2008-10-20
Technical Paper
2008-21-0032
William B. Hanna, Glenn R. Widmann
Both Crash-Avoidance and Pre-Crash active safety technologies are being developed to help reduce the number of crashes and minimize the severity of crashes. The root basis in the development of new and improved active safety technologies always begins with gaining further knowledge about crash kinds and causes. The dynamics of crashes are quite complex. The evolving precursor crash situation initiated in the Crash-Avoidance time-period will vary from the imminent crash situation in the Pre-Crash time-period. As such, in order to develop the appropriate requirements for both crash-avoidance and pre-crash technologies, they must be analyzed from their respective crash data. A data-driven methodology process has been developed which partitions the field data with a perspective to crash-avoidance and pre-crash.
2007-04-16
Technical Paper
2007-01-0774
Karl Schten, Gene Ripley, Ash Punater, Clint Erickson
This paper describes a new tool to capture cylinder pressure information, calculate combustion parameters, and implement control algorithms. There are numerous instrumentation and prototyping systems which can provide some or all of this capability. The Cylinder Pressure Development Controller (CPDC) is unique in that it uses advanced high volume automotive grade circuitry, packaging, and software methodologies. This approach provides insight regarding the implementation of cylinder pressure based controls in a production engine management system. A high performance data acquisition system is described along with a data reduction technique to minimize data processing requirements. The CPDC software architecture is discussed along with model-based algorithm development and autocoding. Finally, CPDC calculated combustion parameters are compared with those from a well established combustion analysis system and thermodynamic simulations.
2007-04-16
Technical Paper
2007-01-0773
H. Husted, D. Kruger, G. Fattic, G. Ripley, E. Kelly
Implementation of real-time combustion feedback for use in closed-loop combustion control is a technology that has potential to assist in the successful production implementation of advanced diesel combustion modes. Low-temperature, pre-mixed diesel combustion is presently of interest because it offers the ability to lower the engine-out emissions of oxides of nitrogen (NOx) and particulate matter (PM). The need for lowering these two emissions is driven by tighter regulations enacted worldwide, especially the NOx limits in the United States. Reducing engine-out emissions eases the need for additional exhaust aftertreatment devices and their associated cost and mass. In this paper we will describe an experimental cylinder pressure-based control system and present both steady-state and transient results from a diesel engine employing a pre-mixed type of combustion.
2007-04-16
Technical Paper
2007-01-1285
N. Hendriksma, T. Kunz, C. Greene
2-Step variable-valve lift and timing is a high-value technology for the further development of automotive internal combustion engines. 2-Step valve train systems provide improved engine efficiency, emissions, and performance using components that are relatively low-cost and compatible with new and existing cylinder heads. This paper describes the design and development of a 2-Step rocker arm using a combination of analytical tools and physical testing. Prototype hardware was built to confirm the design. Performance and durability test results are presented.
2007-04-16
Technical Paper
2007-01-1283
James F. Sinnamon
Modern engines are becoming highly complex, with several strongly interactive subsystems - - variable cam phasers on both intake and exhaust, along with various kinds of variable valve lift mechanisms. Isolated component models may not yield adequate information to deal with system-level interactive issues, especially when it comes to transient behavior. In addition, massive amounts of expensive experimental work will be required for optimization. Recent computing speed improvements are beginning to permit the use of co-simulation to couple highly detailed and accurate submodels of the various engine components, each created using the most appropriate available simulation package. This paper describes such a system model using GT-Power to model the engine, AMESim to model cam phasers and the engine lubrication system, and Matlab/Simulink to model the engine controllers and the vehicle.
2009-04-20
Technical Paper
2009-01-1184
Amy Peterson, Po-I Lee, Ming-Chia Lai, Ming-Cheng Wu, Craig DiMaggio
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
2009-04-20
Technical Paper
2009-01-1488
Sudhakar Das, Shi-Ing Chang, John Kirwan
This paper describes a correlation study on fuel spray pattern recognition of multi-hole injectors for gasoline direct injection (GDi) engines. Spray pattern is characterized by patternation length, which represents the distance of maximum droplet concentration from the axis of the injector. Five fuel injectors with different numbers and sizes of nozzle holes were considered in this study. Experimental data and CFD modeling results were used separately to develop regression models for spray patternation. These regressions predicted the influence of a number of injector operating and design parameters, including injection system operating pressure, valve lift, injector hole length-to-diameter ratio (L/d) and the orientation of the injector hole. The regression correlations provided a good fit with both experimental and CFD spray simulation results. Thus CFD offers a good complement to experimental validation during development efforts to meet a desired injector spray pattern.
2009-04-20
Journal Article
2009-01-1485
Harry L. Husted, Walter Piock, George Ramsay
In light of the growing emphasis on CO2 emissions reduction, Delphi has undertaken an internal development program to show the fuel economy benefits of lean, stratified combustion with its outwardly-opening solenoid injector in a vehicle environment. This paper presents the status of this ongoing development activity which is not yet completed. Progress to date includes a logical progression from single- and multi-cylinder dynamometer engines to the vehicle environment. The solenoid-actuated injector used in this development has an outwardly-opening valve group to generate a hollow-cone spray with a stable, well-defined recirculation zone to support spray-guided stratification in the combustion chamber. The engine management system of the development vehicle was modified from series-production configuration by changing the engine control unit to permit function development and calibration.
Viewing 1 to 30 of 36

Filter

  • Range:
    to:
  • Year: