Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Multi-Mode Controller Design for Active Seat Suspension with Energy-Harvesting

2020-04-14
2020-01-1083
In this paper, a multi-mode active seat suspension with a single actuator is proposed and built. A one-DOF seat suspension system is modelled based on a quarter car model of commercial vehicle with an actuator which is comprised of a DC motor and a gear reducer. Aiming at improving ride comfort and reducing energy consumption, a multi-mode controller is established. According to the seat vertical acceleration and suspension dynamic travel signals, control strategies switch between three modes: active drive mode, energy harvesting mode and plug breaking mode.
Technical Paper

The Effect of Friction on Ride Comfort Simulation and Suspension Optimization

2020-04-14
2020-01-0765
The design of suspension affects the vehicle dynamics such as ride comfort and handling stability. Nonlinear characteristics and friction are important characteristics of suspension system, and the influence on vehicle dynamic performance cannot be ignored. Based on the seven-degree-of-freedom vehicle vibration nonlinear model with friction, the vibration response process of the vehicle and the influence of suspension friction on vehicle ride comfort and suspension action process were studied. The results show that friction will significantly affects the simulation of ride comfort and coincide with the function of the shock absorber. The suspension shock absorbers of vehicles were optimized with and without suspension friction. The results showed that the suspension tended to choose softer shock absorbers when there was friction. However, both of the two optimizations are able to improve the ride comfort of vehicles, and the simulation results were similar.
Technical Paper

Mount Model Dependent on Amplitude and Frequency for Automotive Powertrain Mounting System

2017-03-28
2017-01-0405
Three constitutive models which capture the amplitude and frequency dependency of filled elastomers are implemented for the conventional engine mounts of automotive powertrain mounting system (PMS). Firstly, a multibody dynamic model of a light duty truck is proposed, which includes 6 degrees of freedom (DOFs) for the PMS. Secondly, Three constitutive models for filled elastomers are implemented for the engine mounts of the PMS, including: (1) Model 1: Kelvin-Voigt model; (2) Model 2: Fractional derivative Kelvin-Voigt model combined with Berg’s friction; (3) Model 3: Generalized elastic viscoelastic elastoplastic model. The nonlinear behaviors of dynamic stiffness and damping of the mounts are investigated. Thirdly, simulations of engine vibration dynamics are presented and compared with these models and the differences between common Kelvin-Voigt model and other constitutive models are observed and analyzed.
Technical Paper

Ride Analysis under a Random Road Model with Interval Parameters

2017-03-28
2017-01-0415
This work is motivated by the fact that the surface of a terrain may vary with local pavement properties and number of passes of the vehicle, which means the roughness coefficient and waviness of the terrain may vary in specific intervals. However, in traditional random terrain models, the roughness coefficient and waviness of the terrain are assumed as constants. Therefore, this assumption may be not very reasonable. A novel random terrain model is presented where the roughness coefficient and waviness of the terrain are expressed by interval numbers instead of constants. A 5-degree-of-freedom ride dynamic model of the vehicle with uncertain parameters is derived. The power spectral density (PSD) and root mean square value (RMS) of the vehicle ride responses are shown and analyzed. Analysis results indicate that the vehicle responses vary in specific intervals under the random terrain excitation with interval parameters.
Technical Paper

Comparison of Rubber Bushing Models for Loads Analysis

2021-04-06
2021-01-0317
The rubber bushing is the key component to suppress vibration in the suspension system, an accurate constitutive model of rubber bushing should capture the amplitude and frequency dependency. Based on the lumped parameter model, three types of rubber bushing models are applied and compared, including the common Kelvin-Voigt model. To evaluate the model parameter and suitable frequency range, the quasi-static and dynamic tests have been performed. Comparing with the testing result, the fractional Kelvin-Voigt model combined with Berg’s friction has the minimum relative error of dynamic stiffness on the whole. Finally, two examples of chassis bushing under different loading conditions are presented. The rubber force and deflection are analyzed in both the time domain and the frequency domain, and the results show the difference of stiffness and hysteresis loop relative to frequency.
Technical Paper

Powertrain Motion Control Analysis under Quasi-Static Extreme Loads

2016-04-05
2016-01-0439
The powertrain mounting system (PMS) plays an important role in improving the NVH (Noise, Vibration, Harshness) quality of the vehicle. In all running conditions of a vehicle, the displacements of the powertrain C.G. should be controlled in a prescribed range to avoid interference with other components in the vehicle. The conventional model of PMS is based on vibration theory, considering the rotation angles are small, ignoring the sequence of the rotations. However, the motion of PMS is in 3D space with 3 translational degrees of freedom and 3 rotational degrees of freedom, when the rotation angles are not small, the conventional model of PMS will cause errors. The errors are likely to make powertrain interfering with other components. This paper proposes a rigid body mechanics model of the powertrain mounting system. When the powertrain undergoes a large rotational motion, the rigid body mechanics model can provide more accurate calculation results.
Technical Paper

Fractional Derivative Rigid Ring Tire Model with Berg Friction for Vehicle Dynamic Analysis

2021-04-06
2021-01-0330
The tire is one of the key components that affect vehicle performance and ride quality. The rigid ring model has been widely used in the dynamic simulation of tire rolling uneven road surface, and calculate the tire stiffness and force of rim under quasi-static conditions. However, the traditional spring-damping between rim and belt is not accurate enough to describe the viscous damping force and hysteretic behavior of rubber. Therefore, it is necessary to propose a new rigid ring model, considering the viscoelasticity of tire side rubber and hysteretic behavior of rubber, to better adapt to the intermediate frequency response of tire. In this paper, the rigid ring model introduces the fractional derivative damping and friction force element to enhance the dynamic response of tire in higher frequency. Linear damping is replaced by a three-parameter fractional-order derivative damping model, and a Berg friction element was added between rim and belt.
X