Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Synthesizing Metrology Technologies to Reduce Engineering Time for Large CNC Machine Compensation

2011-10-18
2011-01-2780
Very large multi-axis CNC machines offer a special challenge for efficient and accurate machine compensation. Aerospace applications demand tight tolerances, but conventional compensation methods become expensive for large machines. Volumetric compensation offers an approach for reducing costs and improving accuracies. A unique control architecture enabled by volumetric compensation enables the use of a single part program by multiple machines. Combining multiple technologies (a proprietary volumetric compensation solver program, Spatial Analyzer, API's Active Target, a laser tracker and bespoke CNC-Tracker communication software for measurement triggering) significantly reduces machine compensation time. Available analysis tools also enable the engineer to evaluate measurement uncertainties and determine the best locations for additional stations as well as quantify the accuracy benefits such stations would offer.
Journal Article

Automated Metrology Solution to Reduce Downtime and De-Skill Tooling Recertification

2012-09-10
2012-01-1869
Wing and fuselage aircraft structures require large precise tools for assembly. These large jigs require periodic re-certification to validate jig accuracy, yet metrology tasks involved may take the tool out of service for a week or more and typically require highly specialized personnel. Increasing the time between re-certifications adds the risk of making out-of-tolerance assemblies. How can we reduce jig re-certification down time without increasing the risk of using out-of-tolerance tooling? An alternative, successfully tested in a prototype tool, is to bring automated metrology tools to bear. Specifically, laser tracker measurements can be automated through a combination of off-the-shelf & custom software, careful line-of-sight planning, and permanent embedded targets. Retro-reflectors are placed at critical points throughout the jig. Inaccessible (out of reach) tool areas are addressed through the use of low cost, permanent, shielded repeatability targets.
Journal Article

Increasing Machine Accuracy by Spatially Compensating Large Scale Machines for Use in Constructing Aerospace Structures

2013-09-17
2013-01-2298
Starting in 2003 Electroimpact began development on a comprehensive kinematic and compensation software package for machines with large envelopes. The software was first implemented on Electroimpact's Automatic Fiber Placement (AFP) equipment. Implementation became almost universal by 2005. By systematically collecting tracker measurements at various machine poses and then using this software to optimize the kinematic parameters of the machine, we are able to reliably achieve machine positional accuracy of approximately 2x the uncertainty of the measurements themselves. The goal of this paper is to document some of the features of this system and show the results of compensation in the hope that this method of machine compensation or similar versions will become mainstream.
Technical Paper

New Jig Mounted Wing Panel Riveters, AERAC 2

2009-11-10
2009-01-3089
Electroimpact revisited a piece of automation history this year. In 1989, Electroimpact delivered its first ever Automated Electromagnetic Riveting and Assembly Cell or A.E.R.A.C. to Textron Aero Structures, now Vought Aircraft Industries. These machines produce upper wing panels for Airbus A330/340 aircraft. They were the precursor to the Low Voltage Electromagnetic Riveters or LVER's producing wing panels for Airbus single isle, A340 and A380 programs in Broughton, Wales, UK. In 2009, Electroimpact delivered two next generation AERAC machines to Vought Aircraft Industries. A significant design challenge was to hold the moving mass for the entire machine under 5220 kg without sacrificing performance of the LVER. These machines employ several new technologies to achieve this including Electroimpact's latest generation rivet injector, an integrated headstone load cell, and GE Fanuc's customer board.
Technical Paper

High Path Accuracy, High Process Force Articulated Robot

2013-09-17
2013-01-2291
Spirit AeroSystems' process of producing carbon fiber nacelle panels requires heat and high force plus a high level of dynamic accuracy. Traditionally this would require large and expensive custom machines. A low cost robotic alternative was developed to perform the same operations utilizing an off-the-shelf 6-axis robot mated to a servo-controlled linear axis. Each of the 7 axes is enhanced with secondary position encoders and the entire system is controlled by a Siemens 840Dsl CNC. The CNC handles all process functions, robot motion, and executes software technologies developed for superior dynamic positional accuracy, including enhanced kinematics. The layout of the work cell allowed the robot to span two work zones so that parts can be loaded and unloaded while the robot continues working in the adjacent zone.
Technical Paper

Robotic Installation of OSI-Bolts

2015-09-15
2015-01-2512
Electroimpact has developed an automated solution for installing OSI-Bolts on the HStab for Boeing's 787-9 aircraft. This solution utilizes Electroimpact's existing accurate robotic system together with new hardware designed specifically for OSI-Bolts. In addition to automated drilling and fastener installation, this system performs numerous quality checks to insure the installed fastener meets engineering requirements. Before installing the fastener, the system measures actual stack thickness and the length of the fastener to ensure that the proper grip is installed. Torque and angle feedback are recorded during installation which can be used determine if the fastener was installed correctly. The system will also automatically shave the small protuberance on the fastener head left by the broken off fastener stem, which is inherent to the OSI-Bolt. Figure 1 Cell Overview
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
Technical Paper

3D Countersink Measurement

2015-09-15
2015-01-2510
Accurate measurement of countersinks in curved parts has always been a challenge. The countersink reference is defined relative to the panel surface which includes some degree of curvature. This curvature thus makes accurate measurements very difficult using both contact and 2D non-contact measurements. By utilizing structured light 3D vision technologies, the ability to very accurately measure a countersink to small tolerances can be achieved. By knowing the pose of the camera and projector, triangulation can be used to calculate the distance to thousands of points on the panel and countersink surface. The plane of the panel is then calculated using Random Sample Consensus (RANSAC) method from the dataset of points which can be adjusted to account for panel curvatures. The countersink is then found using a similar RANSAC method.
Journal Article

A Process for Delivering Extreme AFP Head Reliability

2019-03-19
2019-01-1349
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer be advantageous to have 2 heads of the exact same type in the cell.
X