Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Retention Characteristics of Production Laminated Side Windows

2007-04-16
2007-01-0376
Field accident data have demonstrated that occupant ejection during vehicle rollover is associated with a high risk of serious and fatal injury. Although it has been demonstrated that seat belt use is highly effective in preventing occupant ejections, it has been argued that occupant containment during rollover can be accomplished with the use of laminated side glazing. This study was conducted to evaluate the retention characteristics of production laminated side windows. The current vehicle fleet was surveyed for vehicles equipped with production laminated side glass. The survey examined relevant window system parameters including glass retention system, glass configuration, and window geometry. A representative subset of five front door systems from several manufacturers was chosen for further evaluation. In addition, one legacy rear door system with laminated glass was included for comparison.
Technical Paper

Theoretical Analysis of a Method of Computing Dynamic Roof Crush During Rollovers

2007-04-16
2007-01-0366
A method of computing dynamic roof crush in rollover accidents has been proposed (Bidez, et al., 2005; Cochran et al., 2005). The method used data obtained from accelerometers mounted to the roof rails of sport utility vehicles, along with other measurements, to compute the instantaneous deformation of the roof rails during dolly rollover crash tests. We examined the feasibility and practicality of this methodology in three ways. First, the theoretical derivation was examined. Errors appeared to have been made in deriving and/or interpreting the equations used to compute instantaneous roof crush. Next, a three-dimensional dynamic rollover simulation program was run to produce ideal acceleration data (Yamaguchi et al., 2006, 2005). Using these data, the equations in original, uncorrected form predicted dynamic roof deformations when none existed. When the equations were corrected, the simulation data yielded proper roof positions and no roof deformations.
Technical Paper

Development of a Computational Method to Predict Occupant Motions and Neck Loads During Rollovers

2005-04-11
2005-01-0300
The mechanics of on-road, friction-induced rollovers were studied with the aid of a three-dimensional computer code specifically derived for this purpose. Motions of the wheels, vehicle body, occupant torso, and head were computed. Kane's method was utilized to develop the dynamic equations of motion in closed form. On-road rollover kinematics were compared to a dolly-type rollover at lesser initial speed, but generating a similar roll rotation rate. The simulated on-road rollover created a roof impact on the leading (driver's) side, while the dolly rollover simulation created a trailing-side roof impact. No head-to-roof contacts were predicted in either simulation. The first roof contact during the dolly-type roll generated greater neck loads in lateral bending than the on-road rollover. This work is considered to be the first step in developing a combined vehicle and occupant computational model for studying injury potential during rollovers.
Technical Paper

Electromyographic Activity and Posturing of the Human Neck During Rollover Tests

2005-04-11
2005-01-0302
Lateral head motions, torso motions, lateral neck bending angles, and electromyographic (EMG) activity patterns of five human volunteer passengers are compared to lateral motions of a Hybrid III ATD during right-left and left-right fishhook steering maneuvers leading to vehicular tip-up. While the ATD maintained relatively fixed lateral neck angles, live subjects leaned their heads slightly inward and actively utilized their neck musculature to stiffen their necks against the lateral inertial loads. Except for differences in neck lateral bending, the Hybrid III ATD reasonably reflects occupant kinematics during the pre-trip phase of on-road rollovers.
Technical Paper

Single-Vehicle Rollovers Involving an Initial Off-Roadway Excursion Followed by a Return to Roadway: A NASS Study and Vehicle Response Measurement

2008-04-14
2008-01-0159
This paper describes an investigation that seeks to understand how rollovers occur in real-world crashes, both by studying real world crashes and by analyzing vehicle handling tests to gain insights into potential mechanisms of pre-crash loss of control. In particular, this study focuses on one type of rollover, namely single-vehicle rollovers that follow a pattern of the vehicle first leaving the roadway and then returning to the roadway typically out-of-control. Aims of this study included the following: To describe the frequency and characteristics of single-vehicle rollovers involving an off-roadway excursion followed by a complete, if only temporary return to the roadway. To the extent possible, given available data, to assess the nature and consequences of driver inputs during the crash sequence. To define characteristics of crash scenarios which include a substantial proportion of this subset of single-vehicle rollovers.
Technical Paper

The Effect of Side Impact Collision Delta-V, Restraint Status, and Occupant Position on Injury Outcome

2010-04-12
2010-01-1158
The risk of sustaining injury in side collisions is correlated to collision severity as well as other factors such as restraint usage and occupant position relative to the impact. The most recent National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) data available (1997 to 2007) were analyzed to identify accidents involving passenger vehicles that have experienced an impact with a principal direction of force (PDOF) either between 8:00 and 10:00 or between 2:00 and 4:00, indicating a side impact collision. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants who were at least sixteen years old and were seated in the outboard seating positions of the front row. These data were further analyzed to determine injury risk based on resultant delta-V, restraint system use, and occupant position relative to the impact.
Technical Paper

The Relationship Between Airbags and Injuries

2005-04-11
2005-01-1231
The purpose of this study was to analyze real world crash data to determine whether airbags cause more severe injuries than they prevent and which types of injuries they cause. Using data from the National Accident Sampling System Crashworthiness Data System (NASS CDS), we examined passenger vehicles involved in frontal collisions for calendar years 1995-2003. We found that 99% of airbag-induced injuries to front outboard occupants are minor or moderate, regardless of the occupants' belt use. Belted occupants are 4 times more likely to sustain an AIS3+ injury (serious, severe, critical, or maximum) from any injury source compared to occupants with an airbag-induced injury; the risk of AIS3+ injury from any source is even higher for unbelted occupants. The evidence suggests that airbags do indeed mitigate severe injury.
Technical Paper

The Effect of Frontal Collision Delta-V and Restraint Status on Injury Outcome

2010-04-12
2010-01-0145
The risk of sustaining injury in frontal collisions is correlated to collision severity as well as other factors such as restraint usage and airbag deployment. Eleven years (1997 to 2007) of National Automotive Sampling System (NASS) data from the Crashworthiness Data System (CDS) were analyzed to identify accidents involving passenger vehicles that have experienced an impact with a principal direction of force (PDOF) between 11:00 and 1:00, indicating a frontal collision. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants who were at least sixteen years old and were seated in the outboard seating positions of the front row. These data were further analyzed to determine injury risk based on factors such as delta-V, restraint system use, and airbag deployment. Each body region (head, face, spine, thorax, abdomen, upper extremity, and lower extremity) was considered separately.
Technical Paper

Vehicle Rollover Testing, Methodologies in Recreating Rollover Collisions

2000-05-01
2000-01-1641
Testing techniques for creating rollovers have been a subject of much study and discussion, although previous work has concentrated on creating a repeatable laboratory test for evaluating and comparing vehicle designs. The two testing methodologies presented here address creating rollover tests that closely mimic a specific accident scenario, and are useful in accident reconstruction and evaluation of vehicle performance in specific situations. In order to be able to recreate accidents on off-road terrain, a test fixture called the Roller Coaster Dolly (RCD) was developed. With the RCD a vehicle can be released at speed onto flat or sloping terrain with any desired initial roll, pitch and yaw angle. This can be used to create rollover collisions from the trip stage on, including scenarios such as furrow trip on an inclined road edge.
Technical Paper

Occupant Mechanics in Rollover Simulations of High and Low Aspect Ratio Vehicles

2006-04-03
2006-01-0451
Vehicle aspect ratio has been reported as a significant factor influencing the likelihood of fatality or severe injury/fatality during single-vehicle rollover crashes. To investigate this, dynamic simulations of friction-induced rollover accidents were performed using different roof heights, but otherwise identical vehicle parameters and initial conditions. Higher aspect ratios tended to cause the leading side roof to impact first, with significant impact force. The roof impact forces during the first roll of higher-roofed vehicles were primarily laterally directed with respect to the vehicle. Impact locations during subsequent rolls were less predictable. Lower aspect ratios produced higher impact forces on the trailing side roof that were more vertically oriented with respect to the vehicle. The vertically oriented forces potentially create greater risk for severe neck or head injuries.
X