Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 60
2013-04-08
Journal Article
2013-01-1551
Om Parkash Bhardwaj, Florian Kremer, Stefan Pischinger, Bernhard Lüers, Andreas F. Kolbeck, Thomas Koerfer
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
2014-04-01
Journal Article
2014-01-1270
Thorsten Brands, Peter Hottenbach, Hans-Jürgen Koss, Gerd Grunefeld, Adrien Brassat, Philipp Adomeit, Stefan Pischinger
Abstract Fuel consumption and NOx emissions of gasoline engines at part load can be significantly reduced by Controlled Auto-Ignition combustion concepts. However, the range of Gasoline Controlled Auto-Ignition (GCAI) operation is still limited by lacking combustion stability at low load and by high pressure-rise rates toward higher loads. Previous investigations indicate that the auto-ignition process is particularly determined by the thermodynamic state of the charge and by stratification effects of residual gas, temperature, and air-fuel ratio. However, little experimental data exist on the direct influence of mixture stratification on local ignition and heat-release rate (HRR) in direct-injection (DI) GCAI engines, because it is challenging to measure all the relevant charge and combustion parameters quasi-simultaneously with sufficient spatial/temporal resolution and precision.
2013-01-09
Technical Paper
2013-26-0120
Gereon Hellenbroich, Johannes Ruschhaupt
Current production of Dual Clutch Transmissions (DCTs) feature a maximum of seven speeds, which can easily be realized using three main shafts and four shift sleeves. To increase the number of gears with conventional means, more gears, shift sleeves and shafts have to be added thus increasing size, weight and cost. With the “xDCT” family, FEV has developed a series of DCT concepts which effectively minimize mechanical complexity for any given number of gears by combining two innovative ideas: “Gear generation” and “supported shifts”. In order to “generate gears”, a switchable connection between the two input shafts is installed which allows to use all gears inside the transmission with both clutches. The main challenge then is to effectively use the large number of resulting gears in a shift schedule without torque interruption. The solution is to incorporate “supported shifts” during which torque fill-in for an AMT-style gear shift is provided by the next higher gear.
2013-01-09
Technical Paper
2013-26-0119
Christoph Steffens, Thomas Korfer, Georg Hanses, Adrian Rosplesch, Florian Kremer, Joschka Schaub
Besides an excellent driving performance and power output the reduction of CO2 emission is one of the main driver for the increasing distribution of modern diesel engines. Downsizing/downspeeding, friction reduction, new combustion processes and light weight engine architecture describe additional improvement potentials. Nevertheless, these development trends have a significant influence on the noise and vibration behavior of diesel engines. Therefore measures are also necessary to compensate these acoustic disadvantages. Within this publication the most important and efficient countermeasures are described and assessed. Combustion is still one of the dominant noise sources of a modern diesel engine. Diesel knocking is annoying and the combustion noise level is typically higher than for gasoline engines.
2013-09-08
Technical Paper
2013-24-0088
Marco Meloni, Diego Cacciatore, Jurgen Dohmen, Felix Ring, Franz-Gerd Hermsen
Downsizing, down speeding and hybridization are becoming a standard in the automotive industry. This paper was initiated to answer Automobili Lamborghini R&D's question: what does downsizing mean In technical literature downsizing is often referred to as reducing displacement and, sometimes, cylinders. Through a methodological approach, analysis and experimental activities Automobili Lamborghini, with FEV's support, shows that downsizing in terms of engine friction reduction means only reduction of displacement. Using the Aventador V12 6.5 liter engine as a baseline, two 4.3 liter engines were designed, a V8 and a V12. The engine friction losses of these two engines were calculated all over the engine speed range and during the NEDC cycle utilizing a simulation tool and verified through FEV's “Strip-Method” database. This approach gives us the holistic understanding on engine components design and which technologies should be introduced for the next Lamborghini engine generation.
2013-09-08
Technical Paper
2013-24-0163
Thomas Körfer
The modern DI-diesel engine represents a valuable platform to achieve worldwide tightened CO2 standards while meeting future strengthened emission regulations in the EU and the US. Due to the simultaneous, partially contrary legal demands, new integrated and combined systems are required to allow best overall performance within the upcoming legal frames concerning pollutant emission reduction and minimization of CO2 output. As extended emission relevant areas in the engine map have to be respected in view of RDE and PEMS scenarios in EU, but also facing the LEVIII standards in the US, comprehensive and synchronized technical solutions have to be engineered. Based on furthermore optimized combustion systems with improved combustion efficiency, meaning also lowered exhaust gas temperatures, especially refined and tailored emission control systems are demanded.
2014-04-01
Technical Paper
2014-01-0930
Cagri Cevik, Emre Kanpolat
Abstract The increasing pressure on the engine development process via tighter legislations and increasing competition lead to search for the best possible design for each engine component. Especially the dynamic parts, which contribute to total engine friction at most, are under extreme focus. The search for the optimum layout of crankshafts considering the design aims, such as low friction, low weight and high durability, is usually a manual variation process with limited number of design loops. Within this study computer aided (CA) automated optimization methodologies are integrated into the design procedure to achieve the best possible design solution according to the objectives under consideration of the predefined constraints. An extensive crankshaft optimization study is performed and resulted in many novel and patented design features. A case study for a modern in-line four-cylinder crankshaft is performed to show the potentials.
2014-04-01
Technical Paper
2014-01-1280
Vinod Karthik Rajamani, Hans Rohs
Abstract Legislative restrictions on the currently limited exhaust gas components and the future CO2 emissions limits have led to intensive research in the field of alternative fuels and innovative combustion approaches. Increased homogeneity of air-fuel mixture through advanced injection is one combustion approach, which potentially reduces engine-out nitrogen oxide and particulate emissions, with good fuel consumption in certain load ranges. Ignition characteristics under homogenous combustion conditions differ from those under heterogeneous conditions. Among other reasons, this is due to the increased role of low temperature chemistry with increasing homogeneity. The ignition behaviour of diesel fuels is characterised by the Cetane number (CN), which is, however, determined at significant higher temperatures than those prevalent during ignition under homogenous combustion. As a result, its relevance as a fuel characteristic number requires evaluation.
2014-04-01
Technical Paper
2014-01-1305
Roger F. Cracknell, Javier Ariztegui, Thomas Dubois, Heather Hamje, Leonardo Pellegrini, David Rickeard, Kenneth D. Rose, Kai Deppenkemper, Barbara Graziano, Karl Alexander Heufer, Hans Rohs
Abstract Future engines and vehicles will be required to reduce both regulated and CO2 emissions. To achieve this performance, they will be configured with advanced hardware and engine control technology that will enable their operation on a broader range of fuel properties than today. Previous work has shown that an advanced compression ignition bench engine can operate successfully on a European market gasoline over a range of speed/load conditions while achieving diesel-like engine efficiency and acceptable regulated emissions and noise levels. Stable Gasoline CI (GCI) combustion using a European market gasoline was achieved at high to medium engine loads but combustion at lower loads was very sensitive to EGR rates, leading to longer ignition delays and a steep cylinder pressure rise.
2015-04-14
Journal Article
2015-01-0876
Christian Jörg, Thorsten Schnorbus, Simon Jarvis, Ben Neaves, Kiran Bandila, Daniel Neumann
Abstract The aim of this research collaboration focuses on the realization of a novel Diesel combustion control strategy, known as Digital Combustion Rate Shaping (DiCoRS) for transient engine operation. Therefore, this paper presents an initial, 3D-CFD simulation based evaluation of a physical model-based feedforward controller, considered as a fundamental tool to apply real-time capable combustion rate shaping to a future engine test campaign. DiCoRS is a promising concept to improve noise, soot and HC/CO emissions in parallel, without generating drawbacks in NOx emission and combustion efficiency. Instead of controlling distinct combustion characteristics, DiCoRS aims at controlling the full combustion process and therefore represents the highest possible degree of freedom for combustion control. The manipulated variable is the full injection profile, generally consisting of multiple injection events.
2015-04-14
Journal Article
2015-01-0890
Barbara Graziano, Florian Kremer, Stefan Pischinger, Karl Alexander Heufer, Hans Rohs
Abstract The current and future restrictions on pollutant emissions from internal combustion engines require a holistic investigation of the abilities of alternative fuels to optimize the combustion process and ensure cleaner combustion. In this regard, the Tailor-made Fuels from Biomass (TMFB) Cluster at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University aims at designing production processes for biofuels as well as fuels optimal for use in internal combustion engines. The TMFB Cluster's scientific approach considers the molecular structure of the fuels as an additional degree of freedom for the optimization of both the production pathways and the combustion process of such novel biofuels. Thus, the model-based specification of target parameters is of the utmost importance to improve engine combustion performance and to send feedback information to the biofuel production process.
2014-10-13
Journal Article
2014-01-2846
Om Parkash Bhardwaj, Bernhard Lüers, Bastian Holderbaum, Thomas Koerfer, Stefan Pischinger, Markku Honkanen
Abstract The present work is a continuation of the earlier published results by authors on the investigation of Hydrogenated Vegetable Oil (HVO) on a High Efficiency Diesel Combustion System (SAE Int. J. Fuels Lubr. Paper No. 2013-01-1677 and JSAE Paper No. 283-20145128). In order to further validate and interpret the previously published results of soot microstructure and its consequences on oxidation behavior, the test program was extended to analyze the impact of soot composition, optical properties, and physical properties such as size, concentration etc. on the oxidation behavior. The experiments were performed with pure HVO as well as with petroleum based diesel and today's biofuel (i.e. FAME) as baseline fuels. The soot samples for the different analyses were collected under constant engine operating conditions at indicated raw NOx emissions of Euro 6 level using closed loop combustion control methodology.
2014-10-13
Technical Paper
2014-01-2853
Christoph Menne, Simon Galbraith, Alan Jones, Lars Henning, Thomas Koerfer
Abstract In September 2013 the Jaguar XF 2.2l ECO sport brake and saloon were introduced to the European market. They are the first Jaguar vehicles to realize CO2 emissions below 130 g/km. To achieve these significantly reduced fuel consumption values with an existing 2.2l I4 Diesel engine architecture, selected air path and fuel path components were optimized for increased engine efficiency. Tailored hardware selection and streamlined development were only enabled by the consequent utilisation of the most advanced CAE tools throughout the design phase but also during the complete vehicle application process.
2015-04-14
Technical Paper
2015-01-0399
Alexander Jaust, Bastian Morcinkowski, Stefan Pischinger, Jens Ewald
Abstract In this work, a transport and mixing model that calculates mixing in thermodynamic phase space was derived and validated. The mixing in thermodynamic multizone space is consistent to the one in the spatially resolved physical space. The model is developed using a turbulent channel flow as simplified domain. This physical domain of a direct numerical simulation (DNS) is divided into zones based on the quantitative value of transported scalars. Fluxes between the zones are introduced to describe mixing from the transport equation of the probability density function based on the mixing process in physical space. The mixing process of further scalars can then be carried out with these fluxes instead of solving additional transport equations. The relationship between the exchange flux in phase space and the concept of scalar dissipation are shown and validated by comparison to DNS results.
2015-04-14
Journal Article
2015-01-0163
Madhura Medikeri, Thomas Tasky, Johannes Richenhagen
Abstract With the increasing popularity of seamless gear changing and smooth driving experience along with the need for high fuel efficiency, transmission system development has rapidly increased in complexity. So too has transmission control software while quality requirements are high and time-to-market is short. As a result, extensive testing and documentation along with quick and efficient development methods are required. FEV responds to these challenges by developing and integrating a transmission software product line with an automated verification and validation process according to the concept of Continuous Integration (CI). Hence, the following paper outlines a software architecture called “PERSIST” where complexity is reduced by a modular architecture approach. Additionally, modularity enables testability and tracking of quality defects to their root cause.
2014-09-30
Journal Article
2014-01-2325
Michael Franke, Shirish Bhide, Jack Liang, Michael Neitz, Thomas Hamm
Abstract Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
2014-04-01
Journal Article
2014-01-1663
Markus Schwaderlapp, Mirko Plettenberg, Dean Tomazic, Gregor Schuermann, Felix Ring, Stephen Bowyer
Measures for reducing engine friction within the powertrain are assessed in this paper. The included measures work in combination with several new technologies such as new combustion technologies, downsizing and alternative fuels. The friction reduction measures are discussed for a typical gasoline vehicle. If powertrain friction could be eliminated completely, a reduction of 15% in CO2 emissions could be achieved. In order to comply with more demanding CO2 legislations, new technologies have to be considered to meet these targets. The additional cost for friction reduction measures are often lower than those of other new technologies. Therefore, these measures are worth following up in detail.
2014-04-01
Journal Article
2014-01-1537
Thomas Wittka, Bastian Holderbaum, Teuvo Maunula, Michael Weissner
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
2013-12-20
Journal Article
2013-01-9047
Alexandre Schalch Mendes, Emre Kanpolat, Ralf Rauschen
This paper presents the comparison of two different approaches for crankcase structural analysis. The first approach is a conventional quasi-static simulation, which will not be detailed in this work and the second approach involves determining the dynamic loading generated by the crankshaft torsional, flexural and axial vibrations on the crankcase. The accuracy of this approach consists in the development of a robust mathematical model that can couple the dynamic characteristics of the crankshaft and the crankcase, representing realistically the interaction between both components. The methodology to evaluate these dynamic responses is referred to as hybrid simulation, which consists of the solution of the dynamics of an E-MBS (Elastic Multi Body System) coupled with consecutive FEA (Finite Element Analysis).
2013-09-08
Journal Article
2013-24-0119
Vincenzo De Bellis, Fabio Bozza, Christof Schernus, Tolga Uhlmann
1D codes are nowadays commonly used to investigate a turbocharged ICE performance, turbo-matching and transient response. The turbocharger is usually described in terms of experimentally derived characteristic maps. The latter are commonly measured using the compressor as a brake for the turbine, under steady “hot gas” tests. This approach causes some drawbacks: each iso-speed is commonly limited to a narrow pressure ratio and mass flow rate range, while a wider operating domain is experienced on the engine; the turbine thermal conditions realized on the test rig may strongly differ from the coupled-to-engine operation; a “conventional” net turbine efficiency is really measured, since it includes the effects of the heat exchange on the compressor side, together with bearing friction and windage losses.
2013-05-13
Technical Paper
2013-01-2002
Kiran Govindswamy, Dean Tomazic, Peter Genender, Gregor Schuermann
The electrification of vehicle propulsion has changed the landscape of vehicle NVH. Pure electric vehicles (EV) are almost always quieter than those powered by internal combustion engines. However, one of the key challenges with the development of range extended electric vehicles (ReEV) is the NVH behavior of the vehicle. Specifically, the transition from the EV mode to one where the range extender engine is operational can cause significant NVH issues. In addition, the operation of the range extender engine relative to various driving conditions can also pose significant NVH concerns. In this paper internal combustion engines are examined in terms of their acoustic behavior when used as range extenders. This is done by simulating the vibrations at the engine mounting positions as well as the intake and exhaust orifice noise. By using a transfer path synthesis, interior noise components of the range extenders are calculated from these excitations.
2013-04-08
Journal Article
2013-01-1271
Kiran Govindswamy, Gereon Hellenbroich, Johannes Ruschhaupt
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. The ongoing trends of “downsizing” and “down speeding” have led to the development of turbocharged engines with low displacement and high torque density. In order to meet the launch response requirements with these engines as well as fuel economy needs, transmissions with large ratio spreads will need to be developed. Due to the lack of torque amplification from the torque converter, the next generation of dual clutch transmissions (DCT) will need to have larger launch ratios and ratio spreads than currently available in production today. This paper discusses the development of a new family of DCT (called “xDCT”) for use in front wheel drive vehicles, aimed at meeting some of these challenges. The xDCT family features two innovative concepts, the idea of “gear generation” and “supported shifts”.
2013-04-08
Journal Article
2013-01-1677
Om Parkash Bhardwaj, Andreas F. Kolbeck, Thomas Kkoerfer, Markku Honkanen
The limited availability of fossil fuels and the increasing environmental pollution will lead to an increased demand for sustainable biofuels. The production of bio-based diesel fuels from vegetable oils is commonly accomplished using a process known as Trans-esterification. The product of Transesterification is Fatty Acid Methyl Ester (FAME), commonly known as Biodiesel. An alternative process is Hydro-treatment of seed oils or animal waste fats to produce highly paraffinic renewable diesel fuel called Hydrogenated Vegetable Oil (HVO). Detailed investigations were carried out by the “Department of Advanced Diesel Engine Development” at FEV GmbH Aachen (Germany), to explore the potential of this biofuel compound as a candidate for future compression ignition engines.
2013-04-08
Technical Paper
2013-01-1604
Bennie Luijten, Philipp Adomeit, Andre Brunn, Bart Somers
This paper discusses an experimental approach to compare the amount of gasoline on the liner for different engine setups. This is done in a non-fired motored gasoline direct injection (GDI) test engine with transparent liner walls. The main goal is a planar observation and detection of the liner wetting using a shadowgraphy method. The area of impinged fuel on the liner is visualized. After one injection cycle the decay of the area due to evaporation can be described over the next running cycles without injection. The evaporation rate is a function of the wetted area. The amount of impinged fuel is estimated with a combination of the measured wetted area and theory of evaporation behavior. In this study three different injectors are tested under full load conditions. The injection strategies are varied. Big differences are observed between the injectors and injection strategies. Furthermore the advantages and drawbacks of the measurement method are discussed.
2013-04-08
Technical Paper
2013-01-0911
K.D. Rose, J. Ariztegui, R.F. Cracknell, T. Dubois, H.D.C. Hamje, L. Pellegrini, D.J. Rickeard, B. Heuser, T. Schnorbus, A.F. Kolbeck
Future vehicles will increasingly be required to improve their efficiency, reduce both regulated and CO₂ emissions, and maintain acceptable levels of driving, safety, and noise performance. To achieve this high level of performance, they will be configured with more advanced hardware, sensors, and control technologies that will also enable their operation on a broader range of fuel properties. These capabilities offer the potential to design future vehicles to operate on the most widely available and GHG-reducing fuels. In previous studies, fuel flexibility has been demonstrated on a compression ignition bench engine and vehicle equipped with an advanced engine management system, closed-loop combustion control, and air-path control strategies. An unresolved question is whether engines of this sort can operate routinely on market gasoline while achieving diesel-like efficiency and acceptable emissions and noise levels.
2013-04-08
Technical Paper
2013-01-0934
Stephan-Johannes Schnorpfeil, Stefan Pischinger, Philipp Adomeit, Stephen Bowyer
For turbocharged engines high specific power and torque output as well as a fast transient response are mandatory. This conflict of aims can be solved by different charging systems, for example 2-stage charging or variable turbine geometry. At the Institute for Combustion Engines (VKA) at RWTH Aachen University another alternative, the variable compressor pre swirl, was investigated for solving this conflict of aims. Based on theoretical fundamentals the potentials of a variable compressor pre swirl for transient response, low end torque, specific power output and fuel consumption were presented. These theoretical potentials were explored on turbocharger -, engine - and vehicle test bench. An extended compressor map with partial higher compressor efficiency of up to 2% was detected. The outcome of this is an increase of up to 6% in low end torque, found on engine test bench. This effect could also be validated in 1D simulation.
2013-04-08
Technical Paper
2013-01-0400
Marek Tatur, Dean Tomazic, Hans-Dieter Sonntag, Norbert Wiehagen, Thomas Jackson
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
2013-04-08
Technical Paper
2013-01-0288
Henning Kleeberg, Dean Tomazic, Jürgen Dohmen, Karsten Wittek, Andreas Balazs
Downsizing in combination with turbocharging currently represents the main technology trend for meeting CO2 emissions with gasoline engines. Besides the well-known advantages of downsizing the compression ratio has to be reduced in order to mitigate knock at higher engine loads along with increased turbocharging demand to compensate for the reduction in power. Another disadvantage occurs at part load with increasing boost pressure levels causing the part load efficiencies to deteriorate. The application of a variable compression ratio (VCR) system can help to mitigate these disadvantages. The 2-stage VCR system with variable kinetic lengths entails variable powertrain components which can be used instead of the conventional components and thus only require minor modifications for existing engine architectures. The presented variable length connecting rod system has been continuously developed over the past years.
2013-04-08
Journal Article
2013-01-0267
Junseok Chang, Gautam Kalghatgi, Amer Amer, Philipp Adomeit, Hans Rohs, Benedikt Heuser
Demand for transport energy is growing but this growth is skewed heavily toward commercial transport, such as, heavy road, aviation, marine and rail which uses heavier fuels like diesel and kerosene. This is likely to lead to an abundance and easy availability of lighter fractions like naphtha, which is the product of the initial distillation of crude oil. Naphtha will also require lower energy to produce and hence will have a lower CO₂ impact compared to diesel or gasoline. It would be desirable to develop engine combustion systems that could run on naphtha. Many recent studies have shown that running compression ignition engines on very low Cetane fuels, which are very similar to naphtha in their auto-ignition behavior, offers the prospect of developing very efficient, clean, simple and cheap engine combustion systems. Significant development work would be required before such systems could power practical vehicles.
2012-10-23
Technical Paper
2012-32-0081
Martin Pischinger, Dean Tomazic, Karsten Wittek, Hans-Joachim Esch, Eduard Köhler, Moritz Baehr
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
Viewing 1 to 30 of 60

Filter

  • Range:
    to:
  • Year: