Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 98
1980-02-01
Technical Paper
800494
B. Huang, E. Rivin
In-plant trailers constitute a large portion of material handling system in manufacturing plants of the automotive industry. The trailers are among the most intensive noise sources, with radiated noise reaching 110 dBA (Leq). High dynamic loads are also generated on the floor and in the trailer structure. These dynamic loads lead to maintenance problems and inflated inventory of the trailers. Principal mechanisms responsible for generating noise and dynamic loads are identified and treatments to reduce noise and dynamic loads have been developed and investigated on standard trailers. Test results show: for an empty trailer, application of the proposed nonlinear suspension reduces noise 16–18 dBA (Leq) and dynamic load 10 times; for a trailer with an empty rack, application of the proposed nonlinear rack cushion leads to 3–5 dBA (Leq) noise reduction in addition to 8–10 dBA (Leq) reduction due to the suspension.
1980-02-01
Technical Paper
800495
E. Rivin, S. Shmuter
Noise generating mechanisms connected with steel-blanking operation has been identified and their engineering treatments developed and tested. Use of rubber-metal laminates proved to be successful for cushioning impacts in kinematic pairs and joints. Use of plastic for the stripper plate construction was recommended. The “die stiffener” concept was developed to reduce main noise peak associated with punch breakthrough. Screening of the die cavity by a transparent curtain of overlapping PVC strips was shown to be effective. A pulse load simulator with adjustable load rate and amplitude has been developed to facilitate testing of presses.
1980-02-01
Technical Paper
800493
M. Loo, E. Rivin
Identification of the noise generating mechanisms of gravity action and vibrator stimulated sliding chutes has resulted in the development of practical and effective noise abatement treatments for both. In the case of gravity action chutes the application of foam-backed thin and narrow spring steel plates on the chute surface achieves the desired effect with noise reduction of 14 to 25 dB(A). With vibrator stimulated chutes progressive steps were taken to attenuate source noise, chute radiation noise and the non-productive component of the force vector from the vibrator, resulting in noise reduction of 25 to 30 dB(A).
1980-02-01
Technical Paper
800045
J. A. LoRusso, G. A. Lavoie, E. W. Kaiser
Design and development of an electrohydraulically actuated gas sampling valve is presented for use in auto engine combustion studies. The valve was developed with particular emphasis on sampling within the vicinity of the wall quench layer, requiring minimum leakage rates to avoid sample contamination and flush seating of the valve-stem to valve-seat to avoid perturbations of the wall layer. Response in the range of 0.4 to 1.0 milliseconds is attainable for variable valve lifts measured between 0.01 to 0.30 mm while using a net sealing force of approximately 750N. Gas leakage rates ranged from 0.05% to 1% of the sample mass flow rate when sampling from estimated distances from the wall of 0.3 mm to 0.03 mm, respectively, at a cylinder pressure of 10 bar. The gas sampling valve is presently coupled to a gas chromatograph to measure concentrations of major species components.
1981-11-01
Technical Paper
811286
Eugene I. Farber
Analyses were performed to determine the sensitivity of stopping sight distance on vertical curves to driver eye height and other parameters entering into the stopping sight-distance equations. Sight distance was found to be relatively insensitive to eye height. On a given hill crest, sight distance for a driver whose eye height is 6-inches lower than the design eye height (3.75 ft) is only 5% less than the design sight distance. On the other hand, stopping distance is very sensitive to travel speed, pavement friction and reaction time. For example, a 1.8 mph decrease in speed reduces stopping distance by the same amount that a 6-inch decrease in eye height reduces sight distance. Also, sight distance is about 2.5 times more sensitive to obstacle height than eye height. It is argued that reductions in travel speed since the introduction of the 55-mph speed limit compensate for any recent or projected decreases in driver eye height.
1981-10-01
Technical Paper
811198
J. A. Harrington, R. A. Yetter
A mini-dilution tube to measure particulate emissions is described and results obtained in an application are presented. The application selected is a study of fuel effects on stratified charge engine emission and combustion characteristics. The mini-dilution tube was developed to provide a capability for particulate measurements with dynamometer engines. The device has been demonstrated to yield particulate mass results agreeing to within 10 percent of those with a full scale tunnel in steady state tests with diesel powered vehicles. A PROCO engine modified by incorporation of Torch Ignition was used in the study. Fuels were a wide cut gasoline, methanol and Indolene Clear gasoline. The engine was operated at a speed of 1250 rpm with an indicated mean effective pressure of 390 kPa. Spark timing, injection timing, EGR and equivalence ratio were varied.
1980-08-01
Technical Paper
800921
William J. Clemens, William C. Follmer
This paper discusses the growing use of electronics to provide improved fuel economy and control of engine emissions. The advantages of electronic engine controls are outlined, transducers utilized in a 1980 EEC III CFI application are described, and potential future expansion of electronic engine control is discussed.
1981-02-01
Technical Paper
810274
B. K. Powell, H. Wu, C. F. Aquino
A great deal of current automotive engineering effort involves the development of three-way catalyst-based emission control systems that seek to minimize fuel consumption while simultaneously meeting stringent exhaust emission standards. Mitigation of emissions is enhanced in a three-way catalyst system when the system air-fuel ratio (A/F) is in proximity to ideal burning or stoichiometry. This paper is concerned with extending methods used for determining engine calibrations to closed-loop systems with three-way catalysts. The paper presents a simulation model that employs experimentally obtained data to characterize the A/F control loop.
1983-02-01
Technical Paper
830335
Richard C. Belaire, George C. Davis, J. C. Kent, Rodney J. Tabaczynski
Experimental measurements of burn rates have been carried out in a single cylinder homogeneous charge engine. Three different combustion chambers were investigated (75 % and 60 % squish bowl-in-piston chambers and a disk chamber) using a cylinder head with a swirl producing intake port and near central spark location. Data were obtained with each combustion chamber as a function of spark timing, EGR, and load at 1500 RPM. The combustion rate is strongly influenced by chamber shape. The 10-90 % burn durations of the 75 % and 60 % squish chambers are respectively about 40 % and 60 % that of the disk chamber. Chamber configuration had less effect on 0-10 % burn duration. The disk had about 25 % longer 0-10 % burn time than the bowl-in-piston chambers. Modifications to the GESIM model enabled good overall agreement between predictions and experimental data, a rather severe test of the model because the coupling of fluid mechanics, combustion and chamber geometry must be properly modeled.
1983-02-01
Technical Paper
830397
William J. Evans, Charles Haddad
The SS Bumper is a new concept in automobile systems that achieves a very significant weight reduction in steel bumper construction and is capable of meeting the 5 mph FMVSS U.S. Government impact standard. It offers a low cost method of achieving a double digit weight reduction with no cost premium for aluminum or plastic materials. This paper concentrates on describing the configuration of the SS Bumper and a simple, easy to apply procedure for car application which includes discrete equations for bending strengths, torsional strength and the new dent strength relationships which have been recently developed. One version of the SS Bumper applied to the 1983 Thunderbird is also described.
1982-02-01
Technical Paper
820494
B. E. Lampinen, R. A. Jeryan
Future vehicle safety, performance and fuel economy objectives make the development of new materials, concepts and methods of crash energy management desirable. The technique of foam filling structural rails for increased energy absorption was investigated as one such concept. A fractional factorial test program was established to evaluate the weight effectiveness of polyurethane foam as an energy absorber and stabilizer. The experiment provided the quantitative effects of design parameter, varability of results and statistical significance of each parameter with regard to crash characteristics. High density foam was found to be weight effective as a structural reinforcement, but not as an energy absorber. Medium density foam improves the energy absorption of a section. Equivalent energy, however, can be absorbed more weight effectively by changing the metal thickness or the section size.
2011-05-17
Technical Paper
2011-01-1644
Greg Uhlenhake, Ahmet Selamet, Kevin Fogarty, Kevin Tallio, Philip Keller
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
2011-05-17
Technical Paper
2011-01-1542
Changshui Zhou, Shaobo Young, Yongwei Tang
Gear meshing noise is a common noise issue in manual transmission, its noise generation mechanism has been studied extensively [1, 2]. But most of time we have situations where multiple gear sets are connected in series and the noise and vibration behavior for a multi-stage gear can be quite different due to vibration inter-actions or interferences among multiple gear sets. In this paper, a two-stage gear driveline model was built using MSC ADAMS. Vibration order contents of a two-stage gear driveline were analyzed by both CAE simulation and theoretical calculations. In addition to gear meshing vibration orders of each gear set, the orders resulted from modulations between individual gear meshing and their harmonics were evident in the results. These special order contents were verified by experimental results, and also evidenced on transmission end of line tester results at transmission supplier GJT in Ganzhou, China.
2011-04-12
Journal Article
2011-01-1443
Mahmoud Ghannam, Todd Clark
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
2011-05-17
Technical Paper
2011-01-1672
Saeed Siavoshani, Jim Frost
ACOUSTOMIZE™ is a new method of acoustic evaluation used for the purpose of understanding and optimizing NVH performance of vehicles. The following paper documents a case study of the ACOUSTOMIZE™ test methodology on a passenger car BIW. This study includes an analysis of noise flow through BIW locations, a comparison of noise sound levels through BIW cavities with and without a sound treatment package and a comparison of the original cavity sealing design package consisting of baffles, tapes and baggies to low density polyurethane NVH Foam. The results of the study show detection of complex BIW pass throughs that the body leakage test (BLT) was not able to find. In addition, the data shows improved noise reduction with the low density polyurethane foam versus the original cavity sealing design package.
2013-04-08
Journal Article
2013-01-1466
Kerem Bayar, Ryan McGee, Hai Yu, Dale Crombez
This study presents the utilization of the hardware-in-the-loop (HIL) approach for regenerative braking (regen) control enhancement efforts for the power split hybrid vehicle architecture. The HIL stand used in this study includes a production brake control module along with the hydraulic brake system, constituted of an accelerator/brake pedal assembly, electric vacuum booster and pump, brake hydraulic circuit and four brake calipers. This work presents the validation of this HIL simulator with real vehicle data, during mild and heavy braking. Then by using the HIL approach, regen control is enhanced, specifically for two cases. The first case is the jerk in deceleration caused by the brake booster delay, during transitions from regen to friction braking. As an example, the case where the regen is ramped out at a low speed threshold, and the hydraulic braking ramped in, can be considered.
2013-04-08
Journal Article
2013-01-1594
Jaclyn Johnson, Hai-Wen Ge, Jeffrey Naber, Seong-Young Lee, Eric Kurtz, Nan Robarge
Diesel combustion and emissions formation is spray and mixing controlled and understanding spray parameters is key to determining the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, both spray visualization and computational fluid dynamics (CFD) modeling were undertaken to investigate key mechanisms for liquid length fluctuations. For the experimental portion of this study a common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel. Liquid penetration of the spray was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with a 0% oxygen environment. Tests were undertaken at a gas density of 34.8 kg/m₃, 2000 bar injection pressure, and at ambient temperatures of 900, 1100, and 1300 K.
2013-04-08
Journal Article
2013-01-1557
Jonathan Bushkuhl, William Silvis, Joseph Szente, Matti Maricq
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
2015-04-14
Technical Paper
2015-01-0933
Jaclyn Johnson, Jeffrey Naber, Meng Tang, Zachary Taylor, Kyle Yeakle, Eric Kurtz, Nan Robarge
Abstract Diesel combustion and emissions is largely spray and mixing controlled. Spray and combustion models enable characterization over a range of conditions to understand optimum combustion strategies. The validity of models depends on the inputs, including the rate of injection profile of the injector. One method to measure the rate of injection is to measure the momentum, where the injected fuel spray is directed onto a force transducer which provides measurements of momentum flux. From this the mass flow rate is calculated. In this study, the impact of impingement distance, the distance from injector nozzle exit to the anvil connected to the force transducer, is characterized over a range of 2 - 12 mm. This characterization includes the impact of the distance on the momentum flux signal in both magnitude and shape. At longer impingement distances, it is hypothesized that a peak in momentum could occur due to increasing velocity of fuel injected as the pintle fully opens.
2015-04-14
Technical Paper
2015-01-0336
Amey Karnik, Daniel Pachner, Adrian M. Fuxman, David Germann, Mrdjan Jankovic, Christopher House
Abstract Numerous studies describe the fuel consumption benefits of changing the powertrain temperature based on vehicle operating conditions. Actuators such as electric water pumps and active thermostats now provide more flexibility to change powertrain operating temperature than traditional mechanical-only systems did. Various control strategies have been proposed for powertrain temperature set-point regulation. A characteristic of powertrain thermal management systems is that the operating conditions (speed, load etc) change continuously to meet the driver demand and in most cases, the optimal conditions lie on the edge of the constraint envelope. Control strategies for set-point regulation which rely purely on feedback for disturbance rejection, without knowledge of future disturbances, might not provide the full fuel consumption benefits due to the slow thermal inertia of the system.
2015-04-14
Journal Article
2015-01-0556
Wenkai Li, Haitao Cui, Weidong Wen, Xuming Su, Carlos Engler-Pinto
Abstract Ultrasonic fatigue tests (testing frequency around 20 kHz) have been conducted on four different cast aluminum alloys each with a distinct composition, heat treatment, and microstructure. Tests were performed in dry air, laboratory air and submerged in water. For some alloys, the ultrasonic fatigue lives were dramatically affected by the environment humidity. The effects of different factors like material composition, yield strength, secondary dendrite arm spacing and porosity were investigated; it was concluded that the material strength may be the key factor influencing the environmental humidity effect in ultrasonic fatigue testing. Further investigation on the effect of chemical composition, especially copper content, is needed.
2015-04-14
Technical Paper
2015-01-0557
Katherine Avery, Jwo Pan, Carlos Engler-Pinto
Abstract High silicon molybdenum (HiSiMo) ductile cast iron (DCI) is commonly used for high temperature engine components, such as exhaust manifolds, which are also subjected to severe thermal cycles during vehicle operation. It is imperative to understand the thermomechanical fatigue (TMF) behavior of HiSiMo DCI to accurately predict the durability of high temperature engine components. In this paper, the effect of the minimum temperature of a TMF cycle on TMF life and failure behavior is investigated. Tensile and low cycle fatigue data are first presented for temperatures up to 800°C. Next, TMF data are presented for maximum temperatures of 800°C and minimum cycle temperatures ranging from 300 to 600°C. The data show that decreasing the minimum temperature has a detrimental effect on TMF life. The Smith-Watson-Topper parameter applied at the maximum temperature of the TMF cycle is found to correlate well with out-of-phase (OP) TMF life for all tested minimum temperatures.
2015-04-14
Technical Paper
2015-01-0533
Jianghui Mao, Carlos Engler-Pinto, Xuming Su
Abstract In this paper, thermal stress analysis for powertrain component is carried out using two in-house developed elasto-viscoplastic models (i.e. Chaboche model and Sehitoglu model) that are implemented into ABAQUS via its user subroutine UMAT. The model parameters are obtained from isothermal cyclic tests performed on standard samples under various combinations of strain rates and temperatures. Models' validity is verified by comparing to independent non-isothermal tests conducted on similar samples. Both models are applied to the numerical analysis of exhaust manifold subject to temperature cycling as a result of vehicle operation. Due to complexity, only four thermal cycles of heating-up and cooling-down are simulated. Results using the two material models are compared in terms of accuracy and computational efficiency.
2015-04-14
Journal Article
2015-01-0443
Zhenfei Zhan, Junqi Yang, Yan Fu, Ren-Jye Yang, Saeed Barbat, Ling Zheng
Abstract Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
2015-04-14
Technical Paper
2015-01-0437
Zhendan Xue, Mariapia Marchi, Sumeet Parashar, Guosong Li
Abstract Robustness/Reliability Assessment and Optimization (RRAO) is often computationally expensive because obtaining accurate Uncertainty Quantification (UQ) may require a large number of design samples. This is especially true where computationally expensive high fidelity CAE simulations are involved. Approximation methods such as the Polynomial Chaos Expansion (PCE) and other Response Surface Methods (RSM) have been used to reduce the number of time-consuming design samples needed. However, for certain types of problems require the RRAO, one of the first question to consider is which method can provide an accurate and affordable UQ for a given problem. To answer the question, this paper tests the PCE, RSM and pure sampling based approaches on each of the three selected test problems: the Ursem Waves mathematical function, an automotive muffler optimization problem, and a vehicle restraint system optimization problem.
2015-04-14
Technical Paper
2015-01-0422
Zhao Liu, Ping Zhu, Wei Chen, Ren-Jye Yang
Abstract Particle swarm optimization (PSO) is a relatively new stochastic optimization algorithm and has gained much attention in recent years because of its fast convergence speed and strong optimization ability. However, PSO suffers from premature convergence problem for quick losing of diversity. That is to say, if no particle discovers a new superiority position than its previous best location, PSO algorithm will fall into stagnation and output local optimum result. In order to improve the diversity of basic PSO, design of experiment technique is used to initialize the particle swarm in consideration of its space-filling property which guarantees covering the design space comprehensively. And the optimization procedure of PSO is divided into two stages, optimization stage and improving stage. In the optimization stage, the basic PSO initialized by Optimal Latin hypercube technique is conducted.
2015-04-14
Journal Article
2015-01-0479
Hongyi Xu, Ching-Hung Chuang, Ren-Jye Yang
Abstract One of the major challenges in multiobjective, multidisciplinary design optimization (MDO) is the long computational time required in evaluating the new designs' performances. To shorten the cycle time of product design, a data mining-based strategy is developed to improve the efficiency of heuristic optimization algorithms. Based on the historical information of the optimization process, clustering and classification techniques are employed to identify and eliminate the low quality and repetitive designs before operating the time-consuming design evaluations. The proposed method improves design performances within the same computation budget. Two case studies, one mathematical benchmark problem and one vehicle side impact design problem, are conducted as demonstration.
2015-04-14
Journal Article
2015-01-0478
Kai Zheng, Ren-Jye Yang, Jie Hu
Abstract Design optimization methods are commonly used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges remained is to deal with a large number of design variables for large-scale design optimization problems effectively. In this paper, a new approach based on fuzzy rough set is proposed to address this issue. The concept of rough set theory is to deal with redundant information and seek for a reduced design variable set. The proposed method first exploits fuzzy rough set to screen out the insignificant or redundant design variables with regard to the output functions, then uses the reduced design variable set for design optimization. A vehicle body structure is used to demonstrate the effectiveness of the proposed method and compare with a traditional weighted sensitivity based main effect approach.
2015-04-14
Journal Article
2015-01-0455
Hao Pan, Zhimin Xi, Ren-Jye Yang
Abstract A copula-based approach for model bias characterization was previously proposed [18] aiming at improving prediction accuracy compared to other model characterization approaches such as regression and Gaussian Process. This paper proposes an adaptive copula-based approach for model bias identification to enhance the available methodology. The main idea is to use cluster analysis to preprocess data, then apply the copula-based approach using information from each cluster. The final prediction accumulates predictions obtained from each cluster. Two case studies will be used to demonstrate the superiority of the adaptive copula-based approach over its predecessor.
2015-04-14
Journal Article
2015-01-0452
Junqi Yang, Zhenfei Zhan, Chong Chen, Yajing Shu, Ling Zheng, Ren-Jye Yang, Yan Fu, Saeed Barbat
Abstract Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
Viewing 1 to 30 of 98

Filter

  • Range:
    to:
  • Year: