Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Fluid-Structure Interaction CAE Method to Assess Effect of Fuel Slosh on Fuel Level Sensor

2016-04-05
2016-01-1379
Fuel level sensors are used to indicate the amount of fuel in the tank of an automobile. The most common type of fuel level sensor is the float-arm sensor in which a float is connected to a resistance band via an arm. The fuel volume inside the tank sets the height of the float which in turn is converted to a resistance value. This resistance value is converted into gauge reading that is displayed on the dashboard. Whereas this method is widely popular due to its low cost and durability, fuel slosh phenomenon imposes a major challenge. The fuel slosh waves under numerous driving maneuvers impose dynamic drag/lift forces on the float which result into fluctuations in its position (i.e. float height). Under severe acceleration or braking maneuvers, the float can actually submerge inside the liquid and fail to predict location of the free surface. These fluctuations can cause erroneous fuel indication.
Technical Paper

Bench Test Method for Fuel Tank Vent Valve Noise Induced by EVAP System Pressure Pulsation

2017-03-28
2017-01-0447
In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
X