Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Stratified-Charge Engine Fuel Economy and Emission Characteristics

1998-10-19
982704
Data from two engines with distinct stratified-charge combustion systems are presented. One uses an air-forced injection system with a bowl-in-piston combustion chamber. The other is a liquid-only, high-pressure injection system which uses fluid dynamics coupled with a shaped piston to achieve stratification. The fuel economy and emission characteristics were very similar despite significant hardware differences. The contributions of indicated thermal efficiency, mechanical friction, and pumping work to fuel economy are investigated to elucidate where the efficiency gains exist and in which categories further improvements are possible. Emissions patterns and combustion phasing characteristics of stratified-charge combustion are also discussed.
Technical Paper

Engine-Out Emissions from a Direct-Injection Spark-Ignition (DISI) Engine

1999-05-03
1999-01-1529
The effects of operating parameters (speed, load, spark-timing, EGR, and end of fuel injection timing [EOI]) on engine-out, regulated (total HC, NOx, and CO) and speciated HC emissions have been investigated for a 1.83 L direct-injection, spark-ignition (DISI) engine. As the EOI is varied over the range from high to low stratification with other engine parameters held constant, the mole fractions of all regulated emissions vary sharply over relatively small (10-20 crank angle degrees [CAD]) changes in EOI, suggesting that emissions are very sensitive to the evaporation, mixing, and motion of the stratified fuel cloud prior to ignition. The contribution of unburned fuel to the HC emissions decreases while the olefinic partial oxidation products increase as the fuel stratification increases, increasing the smog reactivity of the HC in the exhaust gas by 25%.
X