Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Effect of Occupant Weight and Initial Position in Low-to-High Speed Rear Sled Tests with Older and Modern Seats

2021-04-06
2021-01-0918
The average body weight of the US population has increased over time. This study investigates the effect of increasing weight on seat and occupant responses in 15-18 km/h and 42 km/h rear sled tests. The effect of initial occupant posture is also discussed. Seven tests were conducted with lap-shoulder belted ATDs (anthropometric test device) placed on older and modern driver seats. Four tests were conducted with a 50th percentile male Hybrid III, two with 95th percentile male Hybrid III and one with a BioRID. The ATDs were ballasted to represent a Class I or II obese occupant in three tests. The tests were matched by seat model and sled velocity. The effect of occupant weight was assessed in three matches. The results indicated an increase in seatback deflection with increasing occupant weight.
Technical Paper

Seat Performance in Rear Impacts: Seatback Deflection and Energy Dissipation

2021-04-06
2021-01-0916
Occupant protection in rear crashes is complex. While seatbelts and head restraints are effective in rear impacts, seatbacks offer the primary restraint component to front-seat occupants in rear impacts. Seatback deflection due to occupant loading can occur in a previous rear crash and/or in multiple-rear event crashes. Seatback deflection will in-turn affect the plastic seatback deformation and energy absorption capabilities of the seat. This study was conducted to provide information on seatback deflection and seat energy consumption in low and high-speed rear impacts. The results can be used to examine seatback deflection and energy consumed in a previous rear impact, or in collisions with multiple rear impacts. Prior seatback deflection and energy absorption can affect the total remaining energy absorption and seat performance for a subsequent rear impact.
Technical Paper

Effect of ATD Size, Vehicle Interior and Restraint Misuse on Second-Row Occupant Kinematics in Frontal Sled Tests

2021-04-06
2021-01-0914
Interest in rear-seat occupant safety has increased in recent years. Information relevant to rear-seat occupant interior space and kinematics are needed to evaluate injury risks in real-world accidents. This study was conducted to first assess the effect of size and restraint conditions, including belt misuse, on second-row occupant kinematics and to then document key clearance measurements for an Anthropomorphic Test Device (ATD) seated in the second row in modern vehicles from model years 2015-2020. Twenty-two tests were performed with non-instrumented ATDs; three with a 5th percentile female Hybrid III, 10 tests with a 10-year-old Hybrid III, and 9 tests with a 6-year-old Hybrid III. Test conditions included two sled bucks (mid-size car and sport utility vehicle (SUV)), two test speeds (56 and 64 km/h), and various restraint configurations (properly restrained and improperly restrained configurations). Head and knee trajectories were assessed.
Journal Article

Rear-End Impacts - Part 2: Sled Pulse Effect on Front-Seat Occupant Responses

2022-03-29
2022-01-0854
This study was conducted to assess the effects of differing rear impact pulse characteristics on restraint performance, front-seat occupant kinematics, biomechanical responses, and seat yielding. Five rear sled tests were conducted at 40.2 km/h using a modern seat. The sled buck was representative of a generic sport utility vehicle. A 50th percentile Hybrid III ATD was used. The peak accelerations, acceleration profiles and durations were varied. Three of the pulses were selected based on published information and two were modeled to assess the effects of peak acceleration occurring early and later within the pulse duration using a front and rear biased trapezoidal characteristic shape. The seatback angle at maximum rearward deformation varied from 46 to 67 degrees. It was lowest in Pulse 1 which simulates an 80 km/h car-to-car rear impact.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
Technical Paper

Injury Rates by Crash Severity, Belt Use and Head Restraint Type and Performance in Rear Impacts

2020-04-14
2020-01-1223
This study assesses the exposure distribution and injury rate (MAIS 4+F) to front-outboard non-ejected occupants by crash severity, belt use and head restraint type and damage in rear impacts using 1997-2015 NASS-CDS data. Rear crashes with a delta V <24 km/h (15 mph) accounted for 71% of all exposed occupants. The rate of MAIS 4+F increased with delta V and was higher for unbelted than belted occupants with a rate of 11.7% ± 5.2% and 6.0% ± 1.5% respectively in 48+ km/h (30 mph) delta V. Approximately 12% of front-outboard occupants were in seats equipped with an integral head restraint and 86% were with an adjustable head restraint, irrespective of crash severity. The overall injury rate was 0.14% ± 0.05% and 0.22% ± 0.06%, respectively. It was higher in cases where the head restraint was listed as “damaged”. Thirteen cases involving a lap-shoulder belted occupant in a front-outboard seat in which “damage” to the adjustable head restraint was identified.
Technical Paper

Side Impact Characteristics in Modern Light Vehicles

2024-04-09
2024-01-2646
Occupant protection in side impacts, in particular for near-side occupants, is a challenge due to the occupant’s close proximity to the impact. Near-side occupants have limited space to ride down the impact. Curtain and side airbags fill the gap between occupant and the side interior. This analysis was conducted to provide insight on the characteristics of side impacts and the relevancy of currently regulated test configurations. For this purpose, 2007-2015 NASS-CDS and 2017-2021 CISS side crash data were analyzed for towed light vehicles. 2008 and newer model year vehicle data was selected to ensure that most vehicles were equipped with side/curtain airbags. The results showed that side impacts accounted for approximately 26.7% of the vehicles involved and 18.9% of the vehicles with at least one seriously injured occupant. Most side impacts involved damage to the front and front-to-center of the vehicle.
Journal Article

Rear-End Impacts - Part 1: Field and Test Data Analysis of Crash Characteristics

2022-03-29
2022-01-0859
Prior to developing or modifying the protocol of a performance evaluation test, it is important to identify field relevant conditions. The objective of this study was to assess the distribution of selected crash variables from rear crash field collisions involving modern vehicles. The number of exposed and serious-to-fatally injured non-ejected occupants was determined in 2008+ model year (MY) vehicles using the NASS-CDS and CISS databases. Selected crash variables were assessed for rear crashes, including severity (delta V), impact location, struck vehicle type, and striking objects. In addition, 15 EDRs were collected from 2017 to 2019 CISS cases involving 2008+ MY light vehicles with a rear delta V ranging from 32 to 48 km/h. Ten rear crash tests were also investigated to identify pulse characteristics in rear crashes. The tests included five vehicle-to-vehicle crash tests and five FMVSS 301R barrier tests matching the struck vehicle.
X