Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development and Validation of an Analytical Seal Bead Design Model for Automotive Superplastic Forming

2010-04-12
2010-01-0979
With the increasing demand for fuel efficient vehicles, technologies like superplastic forming (SPF) are being developed and implemented to allow for the utilization of lightweight automotive sheet materials. While forming under superplastic conditions leads to increased formability in lightweight alloys, such as aluminum, the slower forming times required by the technology can limit the technology to low to mid production levels. One problem that can increase forming time is the reduction of forming pressure due to pressurizing (forming) gas leaks, during the forming cycle, at the die/sheet/blankholder interface. Traditionally, such leaks have been successfully addressed through the use of a seal bead. However, for advanced die technologies that result in reduced cycle times (such as hot draw mechanical performing, which combine aspects of mechanical preforming of the sheet metal followed by SPF), the use of seal beads can restrict the drawing of sheet material into the forming die.
Journal Article

Using an Assembly Sequencing Application to React to a Production Constraint: a Case Study

2017-03-28
2017-01-0242
Ford Motor Company’s assembly plants build vehicles in a certain sequence. The planned sequence for the plant’s trim and final assembly area is developed centrally and is sent to the plant several days in advance. In this work we present the study of two cases where the plant changes the planned sequence to cope with production constraints. In one case, a plant pulls ahead two-tone orders that require two passes through the paint shop. This is further complicated by presence in the body shop area of a unidirectional rotating tool that allows efficient build of a sequence “A-B-C” but heavily penalizes a sequence “C-B-A”. The plant changes the original planned sequence in the body shop area to the one that satisfies both pull-ahead and rotating tool requirements. In the other case, a plant runs on lean inventories. Material consumption is tightly controlled down to the hour to match with planned material deliveries.
Technical Paper

Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS)

2020-04-14
2020-01-0777
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project to develop structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components are in scope for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Journal Article

Control System Development for the Dual Drive Hybrid System

2009-04-20
2009-01-0231
Automotive manufacturers continue to move further toward powertrain electrification. There are already many hybrid electric vehicles on the market that are based on a variety of system architectures. Ford Motor Company has investigated a new Dual Drive configuration that promises to overcome some of the attribute deficiencies associated with current architectures. The primary objective of this development project was to demonstrate the fuel economy potential of this system in a vehicle. To accomplish this objective, the team used an internally developed, formal Controls Development Process (CDP) for the control system design and validation. This paper describes the development of the vehicle control system in the context of this process.
Journal Article

Motor Vehicle PM Emissions Measurement at LEV III Levels

2011-04-12
2011-01-0623
This paper examines the issues concerning particulate matter (PM) emissions measurement at the 3 mg/mi level proposed as the future LEV III standard. These issues are general in nature, but are exacerbated at the low levels contemplated for upcoming emissions standards. They are discussed in the context of gasoline direct injection (GDI) engines, where they can have an important impact on the continued development of this technology for improved fuel economy. GDI particulate emissions, just as engine-out diesel PM, contain a high fraction of soot. But the total PM mass is significantly lower than from diesel engines, and there can be significant variations in emissions rate and apparent PM composition between cold-start and running emissions. PM emissions levels depend on sampling method and location. As a result, there can be substantial differences in PM sampled and diluted directly at the exhaust pipe, as opposed to measurements from a dilution tunnel.
Journal Article

Development of Magneto-Elastic Torque Sensor for Automatic Transmission Applications

2013-04-08
2013-01-0301
Progress in the design and application of the magneto-elastic torque sensor to automotive drivetrain systems has taken the technology from the concept level to the point where it is considered production feasible. The latest generation of the sensors shows promising results regarding both the capabilities and applications to powertrain controls. Sensor designs, electronics and packaging layout are maturing. Well-defined component specifications and requirements are becoming available. The sensor utilities for real-time shift analysis and friction element control are established through vehicle-level investigation to demonstrate the production feasibility of the technology for transmission torque sensing.
Journal Article

Thermo-Viscoelastic Model for Shrinkage and Warpage Prediction During Cooling and Solidification of Automotive Blow Molded Parts

2013-04-08
2013-01-1397
Blow moulding is one of the most important polymer processing methods for producing complex thermoplastic automotive parts. Contrary to injection molding, little attention has focused on process control and simulation of blow molding processes. Yet, there are still several problems that affect the overall success of forming these parts. Among them are thermally induced stresses, relevant shrinkage and part warpage deformations caused by inappropriate mold design and/or processing conditions. Tolerance issues are critical in automotive applications and therefore part deformation due to solidification needs to be controlled and optimized accordingly. The accurate prediction tool of part deformation due to solidification, under different cooling conditions in automotive formed parts, is important and highly suited for part designers to help achieve an efficient production.
Journal Article

Vehicle Powertrain Thermal Management System Using Model Predictive Control

2016-04-05
2016-01-0215
An advanced powertrain cooling system with appropriate control strategy and active actuators allows greater flexibility in managing engine temperatures and operating near constraints. An organized controls development process is necessary to allow comparison of multiple configurations to select the best way forward. In this work, we formulate, calibrate and validate a Model Predictive Controller (MPC) for temperature regulation and constraint handling in an advanced cooling system. A model-based development process was followed; where the system model was used to develop and calibrate a gain scheduled linear MPC. The implementation of MPC for continuous systems and the modification related to implementing switching systems has been described. Multiple hardware configurations were compared with their corresponding control system in simulations. The system level requirements were translated into MPC calibration parameters for consistent comparison between multiple configurations.
Journal Article

Passive Hydrocarbon Trap to Enable SULEV-30 Tailpipe Emissions from a Flex-Fuel Vehicle on E85 Fuel

2018-04-03
2018-01-0944
Future LEV-III tailpipe (TP) emission regulations pose an enormous challenge forcing the fleet average of light-duty vehicles produced in the 2025 model year to perform at the super ultralow emission vehicle (SULEV-30) certification levels (versus less than 20% produced today). To achieve SULEV-30, regulated TP emissions of non-methane organic gas (NMOG) hydrocarbons (HCs) and oxygenates plus oxides of nitrogen (NOx) must be below a combined 30 mg/mi (18.6 mg/km) standard as measured on the federal emissions certification cycle (FTP-75). However, when flex-fuel vehicles use E85 fuel instead of gasoline, NMOG emissions at cold start are nearly doubled, before the catalytic converter is active. Passive HC traps (HCTs) are a potential solution to reduce TP NMOG emissions. The conventional HCT design was modified by changing the zeolite chemistry so as to improve HC retention coupled with more efficient combustion during the desorption phase.
Technical Paper

Design and Development of 25% Post-Industrial Recycled SMC Hood Assembly for the 1998 Lincoln Continental Program

1998-02-23
981019
This paper describes the process of incorporation of 25% post-industrial recycled sheet molded composite (SMC) material in the 1998 Continental Hood inner. 1998 Continental Hood assembly consists of traditional SMC outer and this recycled hood inner along with three small steel reinforcements. BUDD Plastics collects SMC scraps from their manufacturing plants. The scrap is then processed and made into fillers for production of SMC. Strength of SMC comes from glass fibers and fillers are added to produce the final mix of raw materials. This recycled material is approximately 10% lighter and less stiff than the conventional virgin SMC. This presented unique challenges to the product development team to incorporate this material into a production vehicle in order to obtain the desired goal of reducing land fill and improving the environment.
Technical Paper

Development of a New Oxygen Storage Model for SIMTWC

2007-04-16
2007-01-1081
The high conversion efficiency required by the modern three-way catalyst (TWC) is dependent on oxygen storage material functionality and capacity. To successfully model a TWC, it is critical that the oxygen storage function in the catalyst be adequately represented. The original oxygen storage model (a simple “bucket” model) included in one of Ford's TWC models, SIMTWC, was developed for vehicle programs meeting LEV emission standards. Application of SIMTWC to test data from vehicles targeting more stringent emission standards, such as ULEV and PZEV, revealed limitations in the accuracy of the original bucket model. To address these limitations, an improved kinetic model of oxygen storage is being developed. This new model is more kinetically-detailed than the old model.
Technical Paper

The Design for Six Sigma Approach for the Development of a Carbon Canister for Tier II, LEV II and PZEV Emission Levels

2007-04-16
2007-01-1090
Global concerns involving smog, ozone formation, carcinogens and greenhouse gases have produced increasingly stringent governmental emission regulations worldwide. In the United States, the Environmental Protection Agency (EPA) introduced Tier II emissions regulations and the California Air Resources Board (CARB) established Low Emission Vehicles (LEV II) and Partial Zero Emission Vehicles (PZEV) legislation. These initiatives have created the most stringent emissions regulations to date. Vehicle manufacturers have had to improve their evaporative emission control systems to comply with these standards. The evaporative emission control system is engineered to protect our environment from fuel vapor emissions. The carbon canister is the most important component of the evaporative emissions system due to its ability to capture fuel vapors continuously during the life of the vehicle. Ford Motor Company redesigned its carbon canisters after utilizing Experimental Design techniques.
Technical Paper

Die Wear Severity Diagram and Simulation

2007-04-16
2007-01-1694
Die wear is a significant issue in sheet metal forming particularly for stamping Advanced High-Strength Steels (AHSS) because of their higher strength and microstructure composition. Reliable predictions of the magnitude and distribution of die wear are essential if cost-effective wear-protection strategies are desired in the early stages of tooling development. A die Wear Severity Index (WSI) is introduced in this paper to quantify the magnitude of die wear, which in essence characterizes the frictional energy dissipation per unit area on the die surface throughout the entire forming cycle. It can be readily obtained as part of any finite element simulation of stamping process utilizing incremental solution techniques.
Technical Paper

Laser & Fine Plasma Trimming of Sheet Metal Parts for Low Volume Production

1998-09-29
982333
This study compared laser and fine plasma technology for cutting typical electro-galvanized steel and aluminum automotive stampings. Comparisons were made of various aspects of cut quality, accuracy, disturbance of parent material, cycle time, and capital and operating costs. A sensitivity analysis was included to determine how different scenarios would impact the operating costs. It was found that both processes were capable of high quality cuts at 3800mm/min. Capital savings were achievable through the fine plasma system, but careful consideration of the specific application was essential. This work will allow for an advised comparison of options for sheet metal flexible cutting.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

Automated Migration of Legacy Functions and Algorithms to Model Based Design

2008-04-14
2008-01-0747
Automotive companies have invested a fortune over the last three decades developing real-time embedded control strategies and software to achieve desired functions and performance attributes. Over time, these control algorithms have matured and achieved optimum behavior. The companies have vast repositories of embedded software for a variety of control features that have been validated and deployed for production. These software functions can be reused with minimal modifications for future applications. The companies are also constantly looking for new ways to improve the productivity of the development process that may translate into lower development costs, higher quality and faster time-to-market. All companies are currently embracing Model Based Design (MBD) tools to help achieve the gains in productivity. The most cost effective approach would be to reuse the available legacy software for carry-over features while developing new features with the new MBD tools.
Technical Paper

Comparison of Analytically and Experimentally Obtained Residual Fractions and NOX Emissions in Spark-Ignited Engines

1998-10-19
982562
Using a fast-sampling valve, residual-fraction levels were determined in a 2.0L spark-ignited production engine, over varying engine operating conditions. Individual samples for each operating condition were analyzed by gas-chromatography which allowed for the determination of in-cylinder CO and CO2 levels. Through a comparison of in-cylinder measurement and exhaust data measurements, residual molar fraction (RMF) levels were determined and compared to analytical results. Analytical calculations were performed using the General Engine SIMulation (GESIM) which is a steady state quasi-dimensional engine combustion cycle simulation. Analytical RMF levels, for identical engine operating conditions, were compared to the experimental results as well as a sensitivity study on wave-dynamics and heat transfer on the analytically predicted RMF. Similarly, theoretical and experimental NOx emissions were compared and production sensitivity on RMF levels explored.
Technical Paper

Investigation of a Ford 2.0 L Duratec for Touring Car Racing

1998-11-16
983038
This paper summarizes an investigative study done to evaluate the feasibility of a Ford Duratec engine in 2.0 L Touring Car Racing. The investigative study began in early 1996 due to an interest by British Touring Car Championship and North American Touring Car Championship sanctioning bodies to modify rules & demand the engine be production based in the vehicle entered for competition. The current Ford Touring Car entry uses a Mazda based V-6. This Study was intended to determine initial feasibility of using a 2.0 L Duratec V-6 based on the production 2.5L Mondeo engine. Other benefits expected from this study included; learning more about the Duratec engine at high speeds, technology exchange between a production and racing application, and gaining high performance engineering experience for production engineering personnel. In order to begin the Duratec feasibility study, an initial analytical study was done using Ford CAE tools.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

2009-04-20
2009-01-1029
While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

The Impact of Globalization and New Materials on the Transition to a Fully Digital Tool and Die

2009-04-20
2009-01-0979
Until recently, tool & die making was a very traditional industry, relying on extensive know-how accumulated over decades of practice. Essentially, it remained a two stage-process: engineering/manufacture, followed by tryout/productionization. Improvements focused on engineering and production methods, but tryout remained the exclusive domain of the die maker. At last, advances in computer modeling methods and the adoption of aggressive lean management principles have brought transformational changes to the tryout phase. At the same time, new safety and weight imperatives have increased the penetration of advanced materials, whose formability characteristics are quite different from mild steels. This paper will explore how these advanced materials affect this transformation.
X