Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Examination of Diagnostic Event Data in Bendix Antilock Brake System Electronic Control Units

2012-04-16
2012-01-0994
The use of Heavy Vehicle Event Data Recorders (HVEDRs) in collision analysis has been recognized in past research. Numerous publications have been presented illustrating data accuracy both in normal operating conditions as well as under emergency braking conditions [1,2,3]. To date, the bulk of this research has focused on HVEDRs incorporated into the Electronic Control Modules (ECMs) employed by various manufacturers to monitor and control engine operation. Oftentimes, data associated with engine diagnostic faults include vehicle speed and driver input parameters that are later used in a collision analysis. In addition to the ECM, other electronic control systems may store data associated with fault conditions. For example, the Antilock Braking System (ABS) Electronic Control Unit (ECU), which is tasked with electronically controlling brake application air pressure to reduce wheel lockup, is such a unit that has the ability to store diagnostic information.
Technical Paper

Using NFPA Compliant Fire Apparatus Vehicle Data Recorders for Collision Investigation - Weldon Type 6444

2015-04-14
2015-01-1446
The use of Heavy Vehicle Event Data Recorders (HVEDRs) in collision analysis has been well recognized in past research. Numerous publications have been presented illustrating data accuracy both in normal operating conditions as well as under emergency braking conditions. These data recording devices are generally incorporated into Electronic Control Modules (ECMs) for engines or Electronic Control Units (ECUs) for other vehicular components such as the Anti-Lock Brake System. Other research has looked at after-market recorders, including publically-available Global Positioning System (GPS) devices and fleet management tools such as Qualcomm. In 2009, the National Fire Protection Association (NFPA) incorporated a Vehicle Data Recorder (VDR) component into their Standard for Automotive Fire Apparatus. The purpose of this was to “…capture data that can be used to promote safe driving and riding practices.” The Standard requires minimum data elements, recording times, and sample rates.
Technical Paper

Using Marine Engine Control Units in the Investigation of Watercraft Collision Incidents - Mercury Verado Outboard Engine

2014-04-01
2014-01-0499
In the investigation of a collision involving recreational watercraft, analytical methods are generally limited when compared to incidents involving land-based vehicles. As is indicated in previous publications, investigators often rely on time/distance relationships, human factors, the matching of damage to determine vessel positioning at impact, and the recollections of witnesses. When applicable, speed estimates are generally based on the boat engine's revolutions. By considering the engine speed, the drive gear ratio, the propeller pitch, and the likely slip of the propeller, an estimation of the boat's travel speed can be made. In more recent publications, it has been recognized that Event Data Recorder (EDR) technology incorporated into various Electronic Control Units (ECUs) used in automotive applications can be beneficial to collision investigation and reconstruction.
Journal Article

Timing and Synchronization of the Event Data Recorded by the Electronic Control Modules of Commercial Motor Vehicles - DDEC V

2013-04-08
2013-01-1267
It is well recognized that Heavy Vehicle Event Data Recorder (HVEDR) technology has been incorporated in the Electronic Control Modules (ECMs) on many on-highway commercial motor vehicles. The dynamic time-series data recorded by these HVEDRs typically include vehicle speed, engine speed, brake and clutch pedal status, and accelerator pedal position. With specific respect to Detroit Diesel ECMs, data are recorded surrounding certain events at a rate of 1.0 Hz. In this research, controlled testing was conducted to determine the time differences between the values being generated by the sourcing sensors and the interpreted data being broadcast on the vehicle's SAE J1939 controller area network (CAN). To accomplish this, raw sensor data as provided to the ECM was monitored, as were the subsequent J1939 CAN transmissions from the ECM.
X