Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 75
2011-04-12
Technical Paper
2011-01-0789
Seung Baek, Hwa-Won Lee, Changkun Lee, Dongseok Kim
In order to reduce the number of head injuries sustained by pedestrian accidents, safety engineers are developing pedestrian friendly hood systems through gauge optimization of the hood inner panel. In this study, the clinch method was employed to assemble a pedestrian friendly hood with a 0.5mm thick inner panel. Static and dynamic analyses were carried out to determine the clinch experiencing the highest loads and to understand the fatigue behavior of a clinched hood during a slam event. The macroscopic failure modes of clinched joints by hood slam were studied by means of a scanning electron microscope. A simple equation was derived to correlate the hexahedron spot weld model as a substitute for clinching in order to obtain an equivalent stiffness for a clinched joint within the linear region of an F-D curve. The F-D curve was obtained by lap shear testing.
2005-05-16
Technical Paper
2005-01-2388
John Hicks, Kurt Schneider
Often components or subsystems are attached to other systems through multiple fasteners at multiple locations. Examples may include things like compressors, alternators, engine cradles, powertrain mounting systems, suspension systems, body structures or almost any other interface between components or subsystems. Often during early design stages, alternative component or subsystem configurations are being considered that can have very different interface characteristics, such as alternators with different number of mounting fasteners, or suspension systems with different number of body structure interface attachments. Given these different mounting configurations, it can be difficult to meaningfully compare the interface performance of the two components or subsystems.
2015-04-14
Technical Paper
2015-01-0944
Maryam Moulai, Ronald Grover, Scott Parrish, David Schmidt
Abstract A computational and experimental study was performed to characterize the flow within a gasoline injector and the ensuing sprays. The computations included the effects of turbulence, cavitation, flash-boiling, compressibility, and the presence of non-condensible gases. The flow domain corresponded to the Engine Combustion Network's Spray G, an eight-hole counterbore injector operating in a variety of conditions. First, a rate tube method was used to measure the rate of injection, which was then used to define inlet boundary conditions for simulation. Correspondingly, injection under submerged conditions was simulated for direct comparison with experimental measurements of discharge coefficient. Next, the internal flow and external spray into pressurized nitrogen were simulated under the base spray G conditions. Finally, injection under flashing conditions was simulated, where the ambient pressure was below the vapor pressure of the fuel.
2015-04-14
Journal Article
2015-01-0194
Hua Zeng, Isao Hoda, William Ivan, Andrew Baker, Syed Kadry, Hiroki Funato, Jia Li, Masayoshi Takahashi, Hideyuki Sakamoto, Ryuichi Saito
Abstract Electromagnetic compatibility (EMC) is becoming more important in power converters and motor drives as seen in hybrid electric vehicles (HEV) to achieve higher reliability of the vehicle and its components. Electromagnetic interference (EMI) of the electronic components for a vehicle are evaluated and validated at a component-level test bench; however, it is sometimes observed that the EMI level of the components can be changed in a vehicle-level test due to differences in the vehicle's configuration (cable routing, connecting location etc.). In this presentation, a vehicle-level EMC simulation methodology is introduced to estimate radiated emissions from a vehicle. The comparison between the simulation and measurement results is also presented and discussed.
2009-06-09
Technical Paper
2009-01-2279
Wei Zhou, Thomas J. Armstrong, Matthew P. Reed, Suzanne G. Hoffman, Diana M. Wegner
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
2010-04-12
Technical Paper
2010-01-0079
John Wilkinson, Cedric W. Mousseau, Thomas Klingler
Vehicle dynamics simulation with Hardware In the Loop (HIL) has been demonstrated to reduce development and validation time for dynamic control systems. For dynamic control systems such as Anti-lock Braking System (ABS) and Electronic Stability Control (ESC), an accurate vehicle dynamics performance simulation system requires the Electronic Brake Control Module (EBCM) coupled with the vehicles brake system hardware. This kind of HIL simulation-specific software tool can further increase efficiency by means of automation and optimization of the development and validation process. This paper presents a method for HIL vehicle dynamics simulator optimization through Brake Response Time (BRT) correlation. The paper discusses the differences between the physical vehicle and the HIL vehicle dynamics simulator. The differences between the physical and virtual systems are used as factors in the development of a Design Of Experiment (DOE) quantifying HIL simulator performance.
2012-10-02
Technical Paper
2012-36-0209
Rafael Navarenho de Souza
The intention of this paper is to discuss the importance of analysis of some electrical parameters in order to design analog circuits in electronic modules, including automotive ones. Today, the challenge is to have devices which consume less power, high performance and higher integration density, so that it explains why such analysis is crucial to achieve better performances and meet the desired results.
2012-04-16
Journal Article
2012-01-0951
Trevor Sweafford, Hwan-Sik Yoon, Yanying Wang, Anthony Will
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
1995-02-01
Technical Paper
950205
Wendy K. Lange
A method has been developed to calculate the percent of a vehicle that is recyclable consistent with Federal Trade Commission (FTC) guidelines. The percent of the vehicle that has been designed for ease of recycling is also calculated. The flow chart and worksheets necessary for the calculation are included.
1994-03-01
Technical Paper
940331
David G. Ebert, Richard A. Kaatz
Historically, vehicle brake feel has usually been evaluated in a subjective manner. If an objective measure was used, it was pedal force versus the deceleration rate of the vehicle. Stopping distance is almost always used to characterize vehicle braking performance by the automotive press. This represents limit braking performance, but ignores braking performance under normal driving conditions experienced by customers most of the time. Evaluation of pedal feel by the press is generally limited to subjective adjectives such as “mushy”, “positive”, and “responsive”. A method will be presented, which is being used by General Motors, to translate customer brake feel expectations into objective performance metrics. These metrics are correlated to actual subjective ratings and are used to set objective, measurable requirements for performance.
1995-05-01
Technical Paper
951254
Jarett M. Smith, Gary R. Ferries, R. Larry Arbanas
Historically, power steering shudder, a vibration which occurs while steering a vehicle at low speeds, has been approached with systematic component-swapping experiments. This approach was time consuming and did not necessarily yield satisfactory results. In this paper it is shown that steering shudder can be analytically approached as a control system with a closed-loop limit cycle caused by the interaction of the chassis and the steering system. This approach provides a metric for determining a vehicle's propensity to shudder and allows quick predictions of the results of changing components. The approach is model-based, and incorporates chassis and hydraulic system components. Results obtained from the control systems analysis have been validated by a vehicle study, which showed a strong correlation between subjective evaluations and the stability metric provided by the analysis.
1998-09-29
Technical Paper
982277
Scott E. Zilincik, Jeffrey DeFrank, Ernie Monroe, Salman Khan
The need for accurate virtual prototyping prediction is well documented in the literature. For welded body structures one notable shortcoming has been the ability for finite element analysis (FEA) to accurately predict the failure of welded joints due to cyclic loading. A new approach to representing spot-welds for durability evaluation in automotive sheet metal structures is presented here. Excellent correlation with spot-weld failures in actual tests have been observed through this modeling approach. We present a method of representing spot-welds using the finite element method. This method has shown to be able of predicting the behavior of spot-welds prior to the build of any prototypes or testing. Further, for spot-weld failures we present evidence that reveals which radial quadrant of the spot-weld will contain the failure. This method also allows engineers to determine the mechanism of failure. This paper describes in detail the spot-weld modeling method.
2006-04-03
Technical Paper
2006-01-0998
Vivek K. Jikar, Elizabeth Cudney, Kenneth M. Ragsdell, Chuck T. Hui
The concept of product or system function is considered as described in the Taguchi System of Quality Engineering. The importance of transfer functions is also discussed and a review of conventional value analysis techniques is given. This paper proposes a combination of the principles of robust design and value methodology to enable on-target functionality and direct cost allocation early in the product development process. The discussion on integration of value analysis principles in robust design methodology is provided considering the six sigma environment.
2006-04-03
Technical Paper
2006-01-1446
Lawrence Ziehr, Jorge Pascal, Markus Wiedemeier
Software development tools can be used in conjunction with test automation tools to validate controller software. Test automation tools must have an open architecture to interface with all the different software and hardware components, within a control validation project. Therefore software development tools like Matlab/Simulink will be able to exchange data via real time interface software with test automation tools. The test automation tool must be flexible to pass data back and forth from/to Microsoft standard software programs like Excel.
2007-04-16
Technical Paper
2007-01-0109
Shailesh Jindal, Bahram Khalighi, James P. Johnson, Kuo-Heuy Chen, Gianluca laccarino
Standard CFD methods require a mesh that fits the boundaries of the computational domain. For a complex geometry the generation of such a grid is time-consuming and often requires modifications to the model geometry. This paper evaluates the Immersed Boundary (IB) approach which does not require a boundary-conforming mesh and thus would speed up the process of the grid generation. In the IB approach the CAD surfaces (in Stereo Lithography -STL- format) are used directly and this eliminates the surface meshing phase and also mitigates the process of the CAD cleanup. A volume mesh, consisting of regular, locally refined, hexahedrals is generated in the computational domain, including inside the body. The cells are then classified as fluid, solid and interface cells using a simple ray-tracing scheme. Interface cells, correspond to regions that are partially fluid and are intersected by the boundary surfaces.
2007-04-16
Technical Paper
2007-01-0360
Mark Steffka, David Trzcinski
The objective of this paper is to propose a new model in the identification of a contributing factor to the generation of Radio Frequency Interference (RFI) due to the operation of a spark-ignited engine. This model incorporates parameters in the electrical operation of the ignition system components and their interaction with the engine mechanical structure, which is also used as a circuit component (the ignition system “ground”). T he model was developed as a result of analysis of numerous studies that have been conducted over the years in an attempt to identify why RFI characteristics can differ when using identical components on different engines, or locating the components in different locations on identical engines. This situation is a problem due to the resulting uncertainty with respect to the determination of what is the optimum vehicle ignition system configuration to meet all electrical and RFI or electromagnetic compatibility (EMC) requirements.
2005-04-11
Technical Paper
2005-01-1028
Michael F. Weber
This paper reviews the history of the General Motor's Epsilon Platform from a Body Structure perspective. From the time that it was conceived in 1996 to the present, the platform has evolved to meet many changing requirements. The focus of this paper will cover basic body requirements such as crash performance, modal requirements, packaging issues, changes for wheelbase and powertrains, mass, different body styles, etc, including the differences between European and US requirements. It will demonstrate that this globally developed platform met all its initial requirements and continued to evolve over time to meet additional changing requirements.
2005-04-11
Technical Paper
2005-01-0569
Janalee A. Graham, Per O. Iversen
As more wireless services such as satellite radio (SDARS), navigation systems, OnStar, and mobile telephones are installed on GM vehicles, there is a need to make quick and accurate vehicle antenna pattern measurements. The interaction between vehicle and antenna must be included to ensure accurate vehicle antenna measurements. This implies that the size of the effective antenna should include both the antenna and vehicle interaction dimensions. For the frequency range of 500 MHz to 6 GHz, one solution is to use a spherical near-field system. The Satimo rapid probe array technology was selected to develop a vehicle antenna test system (ATS), which minimizes test time and maintains data accuracy. The ATS was designed to operate inside of an existing GM electromagnetic compatibility (EMC) anechoic chamber equipped with a nine-meter turntable.
2005-04-11
Technical Paper
2005-01-0813
P. Bertrand Hsing, Xu Han
As the computer efficiency and capability increase, so as the Computer Aided Engineering (CAE) technologies improve. Recently Robust Design or Reliability Based Design Optimization (RBDO) technologies have been utilized in all sorts of industries including automotive. The process generally involves identifying key input design variables and key performance output variables, determining a sampling plan for CAE simulations, building a response surface model (RSM), analyzing the results, and finding the optimized design that meets the reliability criteria. Yet little was addressed on the robustness of a CAE design model in the process. A systematic method of defining Robustness in a CAE design model was developed. How robust a CAE model is and how far away an optimized design is from the More Robust Region (MRR) are addressed in this paper.
2008-04-14
Technical Paper
2008-01-1244
Mark O. Neal, Jian Tu, Donald R. Jones
An interactive tool for predicting the performance of vehicle designs in the pedestrian leg impact test has been developed. This tool allows users to modify the design of a vehicle front structure through the use of a graphical interface, and then evaluates the performance of the design with a response surface. This performance is displayed in the graphical interface, providing the user with nearly instantaneous feedback to his design changes. An example is shown that demonstrates how the tool can be used to help guide the user towards vehicle designs that are likely to improve performance. As part of the development of this tool, a simplified, parametric finite element model of the front structure of the vehicle was created. This vehicle model included eleven parameters that could be adjusted to change the structural dimensions and structural behavior of the model.
2008-04-14
Journal Article
2008-01-0280
Arkadeb Ghosal, Alberto Sangiovanni-Vincentelli, Sri Kanajan
We present a cost model that analyzes monetary costs for a product-line architecture to help the optimization of the architecture. The paper illustrates the usefulness of this methodology in a case study based upon the design exploration of a product-line architecture for an active safety system.
2007-05-15
Technical Paper
2007-01-2281
Scott Reilly, Jinshuo Zhu
General Motors (GM) recently purchased an acoustic holography system based on the Helmholtz Equation Least Squares (HELS) methodology. Typically acoustic holography has utilized planar transformation of the Fourier acoustic equations. General Motors conducted a variety of experiments on a simple well understood structure. This enabled us to understand the setup parameters and confirm the manufacturer's claims for accuracy. Measurements on the structure were taken using the HELS based equipment and a laser vibrometer. Conclusions are drawn on how to set up the equipment for future testing on vehicles.
2007-05-15
Technical Paper
2007-01-2240
David P. Schankin, Zhaohui Sun, Mark A. Gehringer, Mujibus Khan, Jeff Heaton
The need for improved axle NVH integration has increased significantly in recent years with industry trends toward full-time and automatic four wheel drive (4wd) systems. Along with seamless 4wd operation, quiet performance has become a universal expectation. Axle gear-mesh noise can be transmitted to the vehicle passenger compartment through airborne paths (not discussed in this paper) and structure-borne paths (the focus of this paper.) A variety of mounting configurations are used in an attempt to provide improved axle isolation and reduce structure-borne transmission of gear-mesh noise. The configuration discussed in this paper is a 4-point vertical mount design for an Independent Front Drive Axle (IFDA). A significant benefit of this configuration is improved isolation in the range of drive torques where axle-related NVH issues typically exist.
2007-05-15
Technical Paper
2007-01-2172
Phil Shorter, Qijun Zhang, Alan Parrett
This paper investigates the application of the Hybrid FE-SEA method to the prediction of the Transmission Loss (TL) of a front-of-dash component. SEA subsystems are used to represent the source and receiving chambers of a TL test suite and an FE structural subsystem is used to represent the dash component. The potential advantages of the Hybrid FE-SEA method for this application are that: (i) it can provide detailed narrowband predictions of the radiation efficiency and TL of a given component across a broad frequency range and (ii) the computational cost of the approach is typically several orders of magnitude less than that of traditional low frequency FE/BEM/IEM methods. The approach is also potentially well suited to existing analysis processes since information from detailed component level models can be used to update and refine targets obtained from system level SEA models (the use of a common environment for such models simplifies model management).
2016-04-05
Technical Paper
2016-01-0463
Juan Sierra, Camilo Cruz, Luis Munoz, Santiago Avila, Elkin Espitia, Jaime Rodriguez
Abstract Brake systems are strongly related with safety of vehicles. Therefore a reliable design of the brake system is critical as vehicles operate in a wide range of environmental conditions, fulfilling different security requirements. Particularly, countries with mountainous geography expose vehicles to aggressive variations in altitude and road grade. These variations affect the performance of the brake system. In order to study how these changes affect the brake system, two approaches were considered. The first approach was centered on the development of an analytical model for the longitudinal dynamics of the vehicle during braking maneuvers. This model was developed at system-level, considering the whole vehicle. This allowed the understanding of the relation between the braking force and the altitude and road grade, for different fixed deceleration requirement scenarios. The second approach was focused on the characterization of the vacuum servo operation.
2016-04-05
Technical Paper
2016-01-0393
Kevin P. Barbash, William V. Mars
Abstract We demonstrate here an accounting of damage accrual under road loads for a filled natural rubber bushing. The accounting is useful to developers who wish to avoid the typical risks in development programs: either the risk of premature failure, or of costly overdesign. The accounting begins with characterization of the elastomer to quantify governing behaviors: stress-strain response, fatigue crack growth rate, crack precursor size, and strain crystallization. Finite Element Analysis is used to construct a nonlinear mapping between loads and strain components within each element. Multiaxial, variable amplitude strain histories are computed from road loads. Damage accrues in this reckoning via the growth of cracks. Crack growth is calculated via integration of a rate law from an initial size to a size marking end-of-life.
2016-04-05
Technical Paper
2016-01-1205
Chih-Hung (Erik) Yen, Taeyoung Han, Shailendra Kaushik, Bahram Khalighi
Abstract As one of many pack-level battery simulation approaches developed within the General Motors-led Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project, the system approach treats the entire battery pack as a dynamic system which includes multiple engineering disciplines for simulation. It is the most efficient approach of all the CAEBAT battery pack-level approaches in terms of computational time and resources. This paper reports the application of the system approach for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The results using the system approach are found to have a very good agreement with the measurements.
2005-04-11
Technical Paper
2005-01-0467
David P. Hamilton, Vladimir Tchernychouk, Larry Wilson
This paper describes the design and development of the rear compartment structure of the sixth generation Corvette, C6, which starts in the 2005 model year. The improved design integrates the rear compartment packaging to address issues seen on fifth generation Corvette, C5. The molded composite fiberglass reinforced, tub and surround panels are similar to the C5. These large panels are modified to fit the new styling theme of the C6, while also addressing the packaging requirements of the updated underbody structure and exhaust system. New composite side support brackets and cross car reinforcement combine to address several desired improvements. These side support brackets are designed to package the rear audio speakers, electrical modules, wiring and cable routing while also addressing build variation and localized stiffness improvement. The side brackets support the surround panel increasing the manufacturing control of the surround panel.
2004-03-08
Technical Paper
2004-01-1127
Artemis Kloess, Jian Tu
Fast-running metamodels (surrogates or response surfaces) that approximate multivariate input/output relationships of time-consuming CAE simulations facilitate effective design trade-offs and optimizations in the vehicle development process. While the cross-validated nonparametric metamodeling methods are capable of capturing the highly nonlinear input/output relationships, it is crucial to ensure the adequacy of the metamodel error estimates. Moreover, in order to circumvent the so-called curse-of-dimensionality in constructing any nonlinear multivariate metamodels from a realistic number of expensive simulations, it is necessary to reliably eliminate insignificant inputs and consequently reduce the metamodel prediction error by focusing on major contributors. This paper presents a robust data-adaptive nonparametric metamodeling procedure that combines a convergent variable screening process with a robust 2-level error assessment strategy to achieve better metamodel accuracy.
2017-03-28
Journal Article
2017-01-1623
Tim Felke, Steven Holland, Sachin Raviram
Abstract Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Viewing 1 to 30 of 75

Filter

  • Range:
    to:
  • Year: