Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 151
2014-04-01
Technical Paper
2014-01-1160
Vincenzo Alfieri, Daniel Pachner
Abstract The paper examines how the issue of lengthy development times can be mitigated by adopting a multivariable physics based control method for the development and deployment of complex engine control algorithms required for modern diesel engines equipped with Lean NOx Trap aftertreatment technology. The proposed approach facilitates manufacturers to consider lower cost powertrain configurations for selected markets while maintaining higher performance configurations for other markets. The contribution includes on-engine results from joint work between General Motors and Honeywell. The Honeywell OnRAMP Design Suite which applies model predictive control techniques was used for model identification, control design (using model predictive control) and its calibration.
2013-10-07
Technical Paper
2013-36-0113
Dinecio dos Santos Filho
The increasing demand for energy savings in cars of high production volume, especially those classified as emerging market vehicles, has led the automotive industry to focus on several strategies to achieve higher efficiency levels from their systems and components. One of the most diffuse initiatives is reducing weight through the application of the so-called light alloys. An engine cylinder block can contribute nearly two percent of the vehicle's total mass. Special attention and soon repercussion are given when someone decides to apply a light alloy such as the aluminum to this component. Nonetheless, it is known that peculiarities in terms of physical, chemical and mechanical properties, due to the material nature, associated with regional market characteristics make the initial feasibility analysis study definitely one of the most important stages for the material choice decision.
2006-04-03
Technical Paper
2006-01-0326
Glenn W. Scheffler, Gery J. Kissel, Jesse Schneider, Michael Veenstra, Tommy Chang, William Chernicoff, Mark Richards
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has published and is developing standards for FCVs and hydrogen vehicles. SAE J2578 was the first document published by the working group. The document is written from an overall vehicle perspective and deals with the integration of fuel cell and hydrogen systems in the vehicle and the management of risks associated with these systems. Since the publishing of SAE J2578, the working group has updated SAE J1766 regarding post-crash electrical safety and is developing SAE J2579 which deals with vehicular hydrogen systems.
2015-04-14
Technical Paper
2015-01-0944
Maryam Moulai, Ronald Grover, Scott Parrish, David Schmidt
Abstract A computational and experimental study was performed to characterize the flow within a gasoline injector and the ensuing sprays. The computations included the effects of turbulence, cavitation, flash-boiling, compressibility, and the presence of non-condensible gases. The flow domain corresponded to the Engine Combustion Network's Spray G, an eight-hole counterbore injector operating in a variety of conditions. First, a rate tube method was used to measure the rate of injection, which was then used to define inlet boundary conditions for simulation. Correspondingly, injection under submerged conditions was simulated for direct comparison with experimental measurements of discharge coefficient. Next, the internal flow and external spray into pressurized nitrogen were simulated under the base spray G conditions. Finally, injection under flashing conditions was simulated, where the ambient pressure was below the vapor pressure of the fuel.
2015-04-14
Journal Article
2015-01-0680
Rong Zhang, Qian Zou, Gary Barber, Ben Zhou, Yucong Wang
Abstract In practice, the piston wrist pin is either fixed to the connecting rod or floats between the connecting rod and the piston. The tribological behavior of fixed wrist pins have been studied by several researchers, however there have been few studies done on the floating wrist pin. A new bench rig has been designed and constructed to investigate the tribological behavior between floating pins and pin bore bearings. The experiments were run using both fixed pins and floating pins under the same working conditions. It was found that for fixed pins there was severe damage on the pin bore in a very short time (5 minutes) and material transfer occurs between the wrist pin and pin bore; however, for the floating pin, even after a long testing time (60 minutes) there was minimal surface damage on either the pin bore or wrist pin.
2010-04-12
Technical Paper
2010-01-0602
Wei Zeng, Min Xu, Ming Zhang, Yuyin Zhang, David Cleary
A laser sheet imaging system with Mie-scattering and Laser Induced Fluorescence (LIF) was used to investigate the spray characteristics of gasoline, methanol and ethanol fuels. A range of conditions found in today's gasoline engines were investigated including that observed during engine cold-start. Both a swirl injector and a multi-hole fuel injector were examined for each of the three fuels. A combination of the second harmonic (532 nm) and the fourth harmonic (266 nm) was generated simultaneously using a Nd:YAG laser system to illuminate the spray. The Mie-scattering technique was used to characterize the liquid phase of the spray while the LIF technique was used to detect a combination of liquid and vapor phases. While gasoline naturally fluoresced, the dopant TEA was added to the methanol and ethanol fuels as a fuel tracer. The Mie-scattering and LIF signals were captured simultaneously using a CCD camera along with an image doubler.
2010-04-12
Technical Paper
2010-01-1079
J.T. Guerin, Wei Liu
To support the market introduction of lithium ion energy storage systems for HEV and EREV applications, a process and tool was developed to expedite the verification of the lithium-ion cell balancing system across differing usage scenarios and cell imbalance rates. Presented is an overview of the cell imbalance analysis methodology and tool used in the development and verification of General Motors cell balancing systems. The use of this analysis methodology and tool has allowed for a cell balancing system optimization that would not have been possible with the use of actual energy storage systems because of the magnitude of lab or vehicle time required to execute the array of tests necessary to comprehend the large number of factors than can influence balancing.
2010-10-19
Journal Article
2010-01-2320
Markus Jochim, Thomas M. Forest
FlexRay is a time triggered automotive communication protocol that connects ECUs (Electronic Control Units) on which distributed automotive applications are executed. If exact agreement (e.g. on physical values measured by redundant sensors on different ECUs) must be reached in the presence of asymmetric communication faults, a byzantine agreement protocol like Signed Messages (SM) can be utilized. This paper gives examples of how byzantine faults can emerge in a FlexRay-based system and proposes optimizations for a FlexRay-specific implementation of the SM protocol. The protocol modifications allow for a reduction in the number of protocol messages under a slightly relaxed fault model, as well as for a reduction in the number of messages to be temporarily stored by the ECUs.
2010-10-19
Technical Paper
2010-01-2300
Alisyn Malek
With the current increase in concern and awareness regarding sustainability and energy, a new focus has been placed on the field of engineering. In this realm of focus, how to educate engineers, more specifically how to continually educate engineers to keep up with technology and the changing workforce has become a very important topic of interest. There exists a gap between graduate studies and professional implementation of technology which the Energy Systems Engineering [ESE] program currently in deployment and development between the University of Michigan and General Motors seeks to address. This work outlines current efforts in encouraging new engineers to enter the field, but focuses primarily on continuing and re-educating the workforce to meet the needs of new technologies. Examples of academic-industry cooperation will be discussed, with some focus on the benefit and experience of the student.
2012-10-02
Technical Paper
2012-36-0499
Paulo Henrique Ogata, Lucas Pintol Nishikawa, Helio Goldenstein, Dinecio dos Santos Filho, Luciano Okazaki
The present work aims to characterize the microstructure of valvetrain camshaft lobes that are currently applied in the automotive industry, obtained by different processing routes. The cam lobe microstructure has been assessed by microscopy, whereas the mechanical properties by hardness profile measurements on the surface region. Microconstituents type and form, composing the final microstructure at the cam lobe work region, are defined by the casting route and/or post-heat treatment process other than alloy chemical composition, so that knowledge and control of processing route is vital to assure suitable valvetrain system assembly performance and durability. Most of the mechanical solicitations on the part occur at the interface between cam and follower; the actual contact area is significantly smaller than the apparent area. As a result, the microstructure at and near the surface performs a direct role on the performance of the valvetrain, cam lobe and its counterpart.
1998-02-23
Technical Paper
980763
Mary Chrenka Opris, Robin Renee Jason, Carl L. Anderson
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
1995-05-01
Technical Paper
951254
Jarett M. Smith, Gary R. Ferries, R. Larry Arbanas
Historically, power steering shudder, a vibration which occurs while steering a vehicle at low speeds, has been approached with systematic component-swapping experiments. This approach was time consuming and did not necessarily yield satisfactory results. In this paper it is shown that steering shudder can be analytically approached as a control system with a closed-loop limit cycle caused by the interaction of the chassis and the steering system. This approach provides a metric for determining a vehicle's propensity to shudder and allows quick predictions of the results of changing components. The approach is model-based, and incorporates chassis and hydraulic system components. Results obtained from the control systems analysis have been validated by a vehicle study, which showed a strong correlation between subjective evaluations and the stability metric provided by the analysis.
2007-04-16
Technical Paper
2007-01-0273
Tim M. Grewe, Brendan M. Conlon, Alan G. Holmes
The new General Motors 2-Mode Hybrid transmission for full-size, full-utility SUVs integrates two electro-mechanical power-split operating modes with four fixed gear ratios and provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. A combination of two power-split modes reduces the amount of mechanical power that must be converted to electricity for continuously variable transmission operation. Four fixed gear ratios further improve power transmission capacity and efficiency for especially demanding maneuvers such as full acceleration, hill climbing, and towing. This paper explains the basics of electro-mechanical power-split transmissions, input-split and compound-split modes, and the addition of fixed gear ratios to these modes to create the 2-Mode Hybrid transmission for SUVs.
2006-10-16
Technical Paper
2006-01-3287
Andrea Strzelec, Christopher J. Rutland, David E. Foster, Yongsheng He
A Soot-NOx Trap (SNT) is a combinatorial aftertreatment device intended to decrease both particulate and NOx emissions simultaneously. A system-level Soot-NOx Trap model was developed by adding Lean NOx Trap kinetics to a 1D Diesel Particulate Filter model. The hybrid model was validated against each parent model for the limiting cases, then exercised to investigate the interacting redox behavior. Modulations in temperature and exhaust air-fuel ratio were investigated for their ability to facilitate particulate oxidation and NOx reduction in the trap.
2006-10-08
Technical Paper
2006-01-3197
Steven J. Weber, Cengiz R. Shevket
Powerful vehicles that are adequately designed to corner at high speeds can generate very high lateral forces at tire-road interface. These forces are counter balanced by chassis, suspension and brake components allowing the vehicle to confidently maneuver around a corner. Although these components may not damage under such high cornering loads, elastic deflections can significantly alter a vehicles performance. One such phenomenon is increased brake pedal travel, to engage brakes, after severe cornering maneuvers. Authors of this paper have worked together to solve exactly this problem on a very powerful luxury segment car.
2007-04-16
Technical Paper
2007-01-0360
Mark Steffka, David Trzcinski
The objective of this paper is to propose a new model in the identification of a contributing factor to the generation of Radio Frequency Interference (RFI) due to the operation of a spark-ignited engine. This model incorporates parameters in the electrical operation of the ignition system components and their interaction with the engine mechanical structure, which is also used as a circuit component (the ignition system “ground”). T he model was developed as a result of analysis of numerous studies that have been conducted over the years in an attempt to identify why RFI characteristics can differ when using identical components on different engines, or locating the components in different locations on identical engines. This situation is a problem due to the resulting uncertainty with respect to the determination of what is the optimum vehicle ignition system configuration to meet all electrical and RFI or electromagnetic compatibility (EMC) requirements.
2007-04-16
Technical Paper
2007-01-0436
Glenn W. Scheffler, Jake DeVaal, Gery J. Kissel, Jesse Schneider, Michael Veenstra, Tommy Chang, Nate Warner, William Chernicoff
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 7 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to the FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline IC-powered vehicles. The document is currently being updated to clarify and update requirements so that the document will continue to be relevant and useful in the future. In addition to developing draft revisions to SAE J2578, the working group has updated SAE J1766 and is developing a new recommended practice on vehicular hydrogen systems (SAE J2579). The documents are written from the standpoint of systems-level, performance-based requirements. A risk-based approach was used to identify potential electrical and fuel system hazards and provide criteria for acceptance.
2003-10-27
Technical Paper
2003-01-3196
Matthew Thornton, Scott Jorgensen, Beth Evans, Ken Wright
Hybrid vehicles may respond to fuel variables in unique ways; they could even require a unique driveability test. The Coordinating Research Council (CRC) conducted a program to determine the effect of ethanol content on driveability performance under cool ambient conditions. In addition to the 27 vehicles in the main fleet, four hybrid electric vehicles (HEVs) were tested using the same fuels and driveability procedure. These HEVs responded to fuel in a manner similar to conventional vehicles; however, the HEVs showed unique driving characteristics not well captured in the existing test.
2005-04-11
Technical Paper
2005-01-1162
Brendan Conlon
Electrically variable transmissions divide power between the electrical and mechanical paths using input, output, or compound split schemes. When combined with an electrical energy storage element such as a battery, these systems allow numerous fuel saving and performance benefits. This paper examines the design tradeoffs in each of the three topologies in order to balance fuel economy, system performance against requirements, and electrical component size. A general EVT analysis method is presented and used to study the fuel economy and performance sensitivity of the three configurations to motor, inverter, and battery constraints, and planetary gear ratios. To evaluate fuel economy, the three systems are assessed for each of the primary fuel economy mechanisms enabled by hybridization. To evaluate performance tradeoffs, system performance against typical vehicle performance design points is compared.
2005-04-11
Technical Paper
2005-01-0002
Jesse M. Schneider, Steven Mathison, Justin Ward, Eloi Taha, John Tillman, Mark Richards, David Zuckerman, Kenneth Kriha, Michael Short, William Collins, Glen Scheffler, Andrés Fernández Durán, Frank Niezabytowski, Todd Suckow, William Chernicoff, Spencer Quong, Joseph Cohen
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
2007-08-05
Technical Paper
2007-01-3747
Farzad Samie, Chunhao Joseph Lee, Kumar Hebbale, Chi-Kuan Kao
Friction Launch transmissions use a wet multi-plate clutch to replace the torque converter in an automatic transmission. By using one of the range clutches inside the transmission, the benefits of this integrated friction launch technology (IFL), such as reduction in mass, packaging, and cost, can be enhanced. The availability of new automatic transmissions with higher number of speeds and wider ratio spreads makes IFL technology more viable than ever before. The new GM Rear-Wheel-Drive (RWD) six-speed transmission has paved the way for a full implementation of integrated friction launch technology in a GM full size Sport-Utility Vehicle (SUV). This project focuses on both hardware and control issues with the friction launch clutch. The hardware issues include designing the clutch for launch energy, cooling, and durability.
2009-04-20
Journal Article
2009-01-0011
Glenn W. Scheffler, Jake DeVaal, Gery J. Kissel, Michael Veenstra, Tommy Chang, Naoki Kinoshita, Matt McClory, Hajime Fukumoto, Marcel Halberstadt, Jesse Schneider
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
2008-10-20
Technical Paper
2008-21-0019
Gerulf Kinkelin, Alain Gilberg, Bertrand Delord, Harald Heinecke, Simon Fürst, Juergen Moessinger, Andreas Lapp, Ulrich Virnich, Stefan Bunzel, Thomas Weber, Noë Spinner, Lennart Lundh, Daniel Svensson, Peter Heitkämper, Fredrik Mattsson, Kenji Nishikawa, Hiroyuki Hirano, Klaus Lange, Bernd Kunkel
The AUTomotive Open System ARchitecture (AUTOSAR) Development Partnership has published early 2008 the specifications Release 3.0 [1], with a prime focus on the overall architecture, basic software, run time environment, communication stacks and methodology. Heavy developments have taken place in the OEM and supplier community to deliver AUTOSAR loaded cars on the streets starting 2008 [2]. The 2008 achievements have been: Improving the specifications in order to secure the exploitation for body, chassis and powertrain applications Adding major features: safety related functionalities, OBD II and Telematics application interfaces.
2007-04-16
Technical Paper
2007-01-0925
Craig S. Ross, Clinton E. Carey, Todd Schanz, Edmund. F. Gaffney, Michael Catalano
Limited-slip differentials improve traction and handling when compared to open differentials, but offer no active modulation and can compromise typical driving. A number of passive control systems exist that attempt to reduce this compromise. Electronically controlled limited-slip differentials (eLSD) are being introduced that allow active control of the differential in all driving situations and can be operated as an open differential, a fully locked differential, or at any point between these extremes. Such an eLSD system was implemented in two General Motors front wheel drive cars-one on an automatic transmission and applied by the transmission pump, the other on a manual transmission and applied by an external pump. This eLSD system contains a multi-plate wet clutch connected to the differential carrier and right side half-shaft of an all wheel drive capable transmission.
2007-04-16
Technical Paper
2007-01-1031
Michael Champrenault, Clayton A. Maas, Jack Cunningham
The need for fuel economy gains is crucial in todays automotive market. There is also growing interest and knowledge of greenhouse gases and their effect on the environment. Paulstra's magnesium powertrain brackets were a solution that was presented not just to reduce the weight of the engine mounting system (which was already under its weight target before magnesium introduction), but in response of the OEM's desire to further reduce the weight of the vehicle for CAFE and weight class impact. This new engine mounting system has three powertrain mount brackets that are high-pressure die cast AZ91D magnesium alloy. This paper will show that these brackets to have a dramatic weight reduction compared to the standard aluminum die-cast material that they replaced. This paper describes the process of approval: concept and material sign-off by the OEM, FEA for strength and modal performance, corrosion, and the final product.
2007-05-15
Technical Paper
2007-01-2240
David P. Schankin, Zhaohui Sun, Mark A. Gehringer, Mujibus Khan, Jeff Heaton
The need for improved axle NVH integration has increased significantly in recent years with industry trends toward full-time and automatic four wheel drive (4wd) systems. Along with seamless 4wd operation, quiet performance has become a universal expectation. Axle gear-mesh noise can be transmitted to the vehicle passenger compartment through airborne paths (not discussed in this paper) and structure-borne paths (the focus of this paper.) A variety of mounting configurations are used in an attempt to provide improved axle isolation and reduce structure-borne transmission of gear-mesh noise. The configuration discussed in this paper is a 4-point vertical mount design for an Independent Front Drive Axle (IFDA). A significant benefit of this configuration is improved isolation in the range of drive torques where axle-related NVH issues typically exist.
2007-04-16
Technical Paper
2007-01-1292
Mark Stabinsky, William Albertson, Jim Tuttle, David Kehr, James Westbrook, Henning Karbstein, Mario Kuhl
In the North American automotive market, cylinder deactivation by means of engine valve deactivation is becoming a significant enabler in reducing the Brake Specific Fuel Consumption (BSFC) of large displacement engines. This allows for the continued market competitiveness of large displacement spark ignition (SI) engines that provide exceptional performance with reduced fuel consumption. As an alternative to a major engine redesign, the Active Fuel Management™ (AFM™) system is a lower cost and effective technology that provides improved fuel economy during part-load conditions. Cylinder deactivation is made possible by utilizing innovative new base engine hardware in conjunction with an advanced control system. In the GM 3.9L V-6 Over Head Valve (OHV) engine, the standard hydraulic roller lifters on the engine's right bank are replaced with deactivating hydraulic roller lifters and a manifold assembly of oil control solenoids.
2007-05-15
Technical Paper
2007-01-2172
Phil Shorter, Qijun Zhang, Alan Parrett
This paper investigates the application of the Hybrid FE-SEA method to the prediction of the Transmission Loss (TL) of a front-of-dash component. SEA subsystems are used to represent the source and receiving chambers of a TL test suite and an FE structural subsystem is used to represent the dash component. The potential advantages of the Hybrid FE-SEA method for this application are that: (i) it can provide detailed narrowband predictions of the radiation efficiency and TL of a given component across a broad frequency range and (ii) the computational cost of the approach is typically several orders of magnitude less than that of traditional low frequency FE/BEM/IEM methods. The approach is also potentially well suited to existing analysis processes since information from detailed component level models can be used to update and refine targets obtained from system level SEA models (the use of a common environment for such models simplifies model management).
2006-10-16
Technical Paper
2006-21-0019
Helmut Fennel, Stefan Bunzel, Harald Heinecke, Jürgen Bielefeld, Simon Fürst, Klaus-Peter Schnelle, Walter Grote, Nico Maldener, Thomas Weber, Florian Wohlgemuth, Jens Ruh, Lennart Lundh, Tomas Sandén, Peter Heitkämper, Robert Rimkus, Jean Leflour, Alain Gilberg, Ulrich Virnich, Stefan Voget, Kenji Nishikawa, Kazuhiro Kajio, Klaus Lange, Thomas Scharnhorst, Bernd Kunkel
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
2009-04-20
Technical Paper
2009-01-1105
James Krasselt, David E. Foster, Jaal Ghandhi, Randy Herold, David Reuss, Paul Najt
This study utilized a 4-valve engine under HCCI combustion conditions. Each side of the split intake port was fed independently with different temperatures and reactant compositions. Therefore, two stratification approaches were enabled: thermal stratification and compositional stratification. Argon was used as a diluent to achieve higher temperatures and stratify the in-cylinder temperature indirectly via a stratification of the ratio of specific heats (γ = cp/cv). Tests covered five operating conditions (including two values of A/F and two loads) and four stratification cases (including one homogeneous and three with varied temperature and composition). Stratifications of the reactants were expected to affect the combustion control and upper load limit through the combustion phasing and duration, respectively. The two approaches to stratification both affect thermal unmixedness. Since argon has a high γ, it reached higher temperatures through the compression stroke [1].
Viewing 1 to 30 of 151

Filter

  • Range:
    to:
  • Year: