Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

CFD for Flow Rate and Air Re-Circulation at Vehicle Idle Conditions

2004-03-08
2004-01-0053
CFD method for the calculation of flow rate and air re-circulation at vehicle idle conditions is described. A small velocity is added to the ambient airflow in order to improve the numerical stability. The flow rate passing through the heat exchangers is insensitive to the ambient velocity, since the flow rate is largely determined by the fan operation. The air re-circulation, however, is quite sensitive to the ambient air velocity. The ambient velocity of U=-1m/s was found to be the more critical case, and is recommended for the air re-circulation analysis. The CFD analysis can also lead to design modifications improving the air re-circulation.
Technical Paper

CFRM Concept for Vehicle Thermal System

2002-03-04
2002-01-1207
Condenser, fan, radiator power train cooling module (CFRM) proposed by Delphi Automobile Systems was evaluated in the context of vehicle thermal system analysis. The results from the CFRM configuration were compared with those from the conventional condenser, radiator, and fan power train cooling module (CRFM). The analysis shows that for a typical passenger vehicle, the underhood temperature for the CFRM configuration is more than 10°C lower than its CRFM counterpart when the fan is operating at the same speed of 2500 rpm. This is due mainly to the higher mass flow rate impelled by the fan in the CFRM configuration. At the equal mass flow condition, both the CFRM and the CRFM configurations give similar underhood temperatures; but the fan in the CFRM configuration uses 19% less power, due mainly to the reduction in the fan speed needed to impel the same amount of mass flow rate.
Technical Paper

Thermal-velocity Coupling in Vehicle Thermal System Calculations

2002-03-04
2002-01-1204
The issue of thermal-velocity coupling is discussed in the context of vehicle thermal system analysis. Temperature variations in the bulk of the fluids caused by the vehicle engine, cooling, and exhaust system lead to variations in the density of the airflow. The density variations impact the velocity field in two ways: by introducing a driving force term explicitly to account for the effect of buoyancy force and by coupling with the other governing equations. The buoyancy force is crucial for buoyancy driven flows such as vehicle under soak condition. The vehicle thermal system analysis based on the coupled approach leads to a 15°C improvement in the prediction of the underhood thermal environment.
Technical Paper

CFRM Concept at Vehicle Idle Conditions

2003-03-03
2003-01-0613
The concept of condenser, fan, and radiator power train cooling module (CFRM) was further evaluated via three-dimensional computational fluid dynamics (CFD) studies in the present paper for vehicle at idle conditions. The analysis shows that the CFRM configuration was more prone to the problem of front-end air re-circulation as compared with the conventional condenser, radiator, and fan power train cooling module (CRFM). The enhanced front-end air re-circulation leads to a higher air temperature passing through the condenser. The higher air temperature, left unimproved, could render the vehicle air conditioning (AC) unit ineffective. The analysis also shows that the front-end air re-circulation can be reduced with an added sealing between the CFRM package and the front of the vehicle, making the CFRM package acceptable at the vehicle idle conditions.
X