Refine Your Search

Topic

Search Results

Technical Paper

Virtual Simulating of Residual Stresses in Aluminum Wheel Designs

2009-04-20
2009-01-0417
The current study shows interesting results obtained by a new virtual approaching for evaluating the final stresses presented in automotive components during its application in vehicle which suggests product engineers a new tool for measuring the residual stresses in casting. As part of this proposal, an automotive as-cast aluminum wheel belong to current production was evaluated in accordance with data acquired in its manufacturing process. At that step, it was taking into account the real information of casting process parameters and the metallurgic results obtained in laboratorial tests such as, metallographic, chemical and mechanical tests. FEA (Finite Element Analysis) on simulation of wheel loading stress was made regarding those preliminary data obtained in CRSFEA simulation (cast residual stress finite element analysis) as entered parameters.
Technical Paper

Influence of residual stresses in aluminum wheel design

2008-10-07
2008-36-0139
The current study shows important results obtained by a new technique of residual stress virtual evaluation in automotive components for improving the development and quality of new products, aiming the structural performance, mass and cost reductions. The approaching those virtual results were adjusted by metallurgic data obtained in metallography, mechanical and chemical analysis. As part of this proposal, an automotive aluminum wheel belong to current production was evaluated in accordance with data acquired in the wheel manufacturing process. It was taking in account the real information of casting process parameters and the metallurgic information obtained in laboratorial tests. In this work, the results show that product residual stresses shall be considerate and evaluated during design phases as improving proposal, new technical concerns and quality improving.
Technical Paper

Computational Methodologies for Vehicles Roof Strength Assessment to Prevent Occupants Injury in Rollover Crashes

2009-10-06
2009-36-0267
Among all types of vehicle crashes, rollover is the most complex and yet least understood. During the last decades, a constant increase in the studies involving rollover crashes and injuries associated with it can be observed. Although the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The existing standards and procedures to test rollover crashworthiness are still not suitable to computer simulation because of the huge computational effort required, and the need of faithful/overly complex representation of the aspects involved in real crashes. The objective of the present work is the development of computational models particularly adapted to simulate different standards and procedures used to evaluate the vehicles' roof strength. The models are compared with other approaches, and their advantages/disadvantages are discussed.
Technical Paper

Computational method to assess the SUV drivers' dynamics due to rollover crashes

2010-10-06
2010-36-0223
Even though the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The need to reduce death incidence and serious injuries has increased the importance of computational simulations and prototype testing. This study presents finite element model to simulate rollover events and to predict possible injuries caused in the head, neck, thorax and cervical spine. Numerical models of a sport utility vehicle (SUV) are simulated including anthropomorphic dummy to represent the driver. The injury risks and traumas are verified to the driver considering belted and unbelted dummies. The computational methodology developed proved to be efficient for the evaluation of the vehicle's roof structure in rollover events.
Technical Paper

Criteria for Selection of Vehicle Electrical Architectures for Emerging Markets

2010-10-06
2010-36-0069
The purpose of this study is to establish the criteria of election of an electrical architecture tailor-made for the emerging markets, to be applied during the whole vehicle's lifecycle. A literature review about related subjects as the meaning of "electrical architecture," its techniques, criteria and methodologies of development, and the definitions of emerging and developed markets is also presented. Based on the bibliographical research, documentary analysis and unstructured interviews with active members of the automotive industry, the criteria for election of electrical architectures for emerging markets was established, as well as their describers and swing-weights, required by the use of the additive aggregation method - a multi-criteria decision taking method. The criteria were applied in two case studies of automotive industry: the developments of a low-cost hatch vehicle and a mid-size luxury sedan vehicle, both designed for emerging markets.
Technical Paper

Powder Metallurgy Application in Automotive Components - Valve Seat Inserts

2001-03-05
2001-01-3953
This work presents aspects related to research and development of high-speed steels for valve seat inserts application. Five series of materials were evaluated: high speed steel M3/2 infiltrated with copper during sintering; high speed steel M3/2 with Cu3P addition; high speed steel M3/2 with Cu3P addition and further copper infiltrated during sintering; high speed steel M3/2 mixed with iron powder; high speed steel M3/2 mixed with iron powder and niobium carbide. The physical and mechanical properties of the evaluated high-speed steels are presented in terms of densification, hardness, and radial mechanical strength. These properties are compared according to the materials processing and heat treatment.
Technical Paper

Objective Vehicle Comfort Verification About Ride Smoothness Based on Psychophysics

2016-10-25
2016-36-0196
The purpose of the theme developed in this work is to increase the volume of information related to vehicle evaluation and how human perception can be translated into numbers, thus facilitating the process of definitions, refinement and analysis of its performance. Based on the discipline of psychophysics, where it is possible to study the relationship between stimulus and sensation and the use of post processing tool known as PSD (Power Spectral Density), post process the acceleration data of inputs perceived by the occupants of the vehicle, when driving in routes considered ergodic. By this, in a summarized way, get to human subjective perception of comfort. This material shows in a conceptual way a sequence of studies that were conducted to make it possible, to generate a performance classification of the subjective vehicle attribute of Smoothness, by processing values of acceleration measured the driver's seat.
Technical Paper

Springback: How to Improve its Early Prediction Instead of Late Stamping Dies Rework

2012-10-02
2012-36-0373
The globalization, rivalry and the technologies have changed the auto industry in a battlefield, where companies are fighting for quality, reliability, the reduction of development cycle and also cost. The manufacturing process of car body is the major responsible for time consumption, labor and investment. One of the bottleneck solutions is to use computational simulations during design phase in order to minimize the reworks. The car body is composed by several stamped parts, and its design requires a series of parallel activities, and one of the fundamental information is the accurate magnitude of spring back distortions, but due to the complexity of the phenomenon, the results are not so accurate as desired. The explored literatures are recommending numeric methods to simulate material's behavior and also the spring back phenomenon.
Technical Paper

Evaluation of Aluminum Wheels with Focus on Specification Materials and Manufacturing

2011-10-04
2011-36-0267
The growing need to avoid failures in vehicle components have become the methods of quality control of manufacturing processes more efficient and accurate, especially in safety components like automotive wheels. The aim of this work is examines the efficiency of aluminum-silicon specifications related to wheel quality for avoiding the poor results obtained in impact and fatigue tests as result of improper settings in the chemical composition and manufacture process. It is evaluated mainly the content of magnesium in aluminum alloys and certified the correct degree of silicon modification in the microstructure on the performance of these wheels. The test results indicate that even with the chemical composition parameters specified by the standard, the technical validation of the product may not be adequate.
Technical Paper

Manual Steering Objective Reference Data Definition based on Subjective Evaluation Correlation

2011-10-04
2011-36-0031
Manual steering is largely employed on emergent markets and it demands high level performance to be competitive. To achieve customer satisfaction, it is important to understand physically and be able to quantify what is good performance regarding imperative steering aspects. Nevertheless, global projects and quality management require objective measurements and reference numbers. The strategy defining the measurements in order to compare among development steps and benchmark must be studied carefully. Objective measurements and subjective evaluation correlation is necessary to define the reference data. In this project, several cars were evaluated and measured performing standard maneuvers. The maneuvers were performed to obtain appropriated and enough information to understand the performance and to do the correlation. The subjective evaluation was normalized and; using objective data, parameters were calculated to represent properly and in a robust form the driver fills.
Technical Paper

Influence of Spot Welding Parameters on Al-Si Coated 22MnB5 for Automotive Application

2017-11-07
2017-36-0225
The application of press hardening steels (PHS) Al-Si coating has been increasing in body in white vehicles as an approach to meet the demands of safety and CO2 reduction regulations. The vehicle structures with PHS largely depend on the integrity and the mechanical performance of the spots weld. During the spot welding process, intermetallic phase may appear in function of the chemical composition of the steel and coating. One of these intermetallics is the Fe-Al phase which brittleness decreases the strength of the weld joint. In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the influence of the welding parameters of single-lap joints PHS - 22MnB5 steel grade.
Technical Paper

Automotive Skin Panels Quality Improvement by Means of Finite Element Method

2013-10-07
2013-36-0194
In the middle of the global competition, inside the automotive sector, the perceived quality of costumers, related to the beauty and harmony of the outer skin surfaces of motor vehicles, has become one of the main determinant factors in the purchase process decision. In general, the initial perceived quality of a car is determined by an appealing design of its body, the color and gloss of its paint, and also the manufacturing and assembly accuracy of the skin panels. The appealing design makes the skin panel even more complex and hard to produce with current metal forming technologies and the results are often small distortions on the outer surfaces about tens of microns and most of the times paint does not cover such imperfections. Despite the technological advances along the years, surface quality inspection was still being performed by manual and subjective evaluation by experts.
Technical Paper

Vehicle Restraint System Optimization for Frontal Impact

2013-10-07
2013-36-0473
The Brazilian Automotive regulations that are aimed towards the safety of drivers, passengers and pedestrians have gone through recent changes to prevent and/or minimize injury and trauma from different types of accidents. Until now, National Traffic Council (CONTRAN) Resolution n° 14/98 required vehicles to only have safety belts for an occupant restraint system, and frontal airbags were not required. Since the recent CONTRAN n° 311/09 Resolution requires mandatory frontal airbags, the occupant restraint system must be tuned due to the interaction with different components that may make up the system, like safety belts with pretensioners and seatbelt load limiting devices. The present study was developed to optimize the restraint system of a current vehicle in production, while focusing on minimizing the vehicle complexity. The optimization tool helped to develop a robust restraint system for the frontal passenger during a frontal impact [1].
Technical Paper

How to Achieve Faster, Cheaper and High Quality Parts by RTV Silicone Rubber Process

2005-11-22
2005-01-4095
In the automotive industries, time and parts production costs are fundamental, mainly in prototyping production. The RTV (Room Temperature Vulcanized) process is an important alternative production to flexible silicone molds when you need to inject polyurethane parts. The objective is time reduction in tooling production and parts. RTV requires notable initial investments in equipments. Many times, this cost does not fit in the automotive third part company's budget. This work shows how is possible to obtain parts by RTV process with excellent quality, without high investments in equipments and without quality loss in produced parts. Lead times and tooling and parts costs are analyzed. Due to equipments low costs, this alternative is accessible not only to automotive industries but also to small and medium suppliers.
Technical Paper

Treatment of End of Life Vehicles in Brazil: Challenges and Opportunities

2012-10-02
2012-36-0217
Style changes and technological advances have led to reduced service life of current products as automobiles. These are among the goods that are constantly re-designed to meet our growing needs for improved products. However, these demands for new products and more modern has meant a great cost to our natural resources, such as excessive use of raw materials, water and energy during production, use and end of life cycle of these assets. The increasing scarcity of land available for the proper disposal of waste in landfills, in addition to the high cost of implementing these areas and the increasing distances to urban centers imply the need to reduce solid waste generation, including here the automotive. The growth of the automotive market has created a serious problem due to the disposal of urban waste volumes generated, the great diversity of materials involved and their toxicity.
Technical Paper

Fatigue Life of Stabilizer Bars and Specimens for Two Microstructural Conditions: Pearlitic and Martensitic

2005-04-11
2005-01-0799
The current study proposes to approach the fatigue behavior of stabilizer bars and specimens manufactured in quenched / tempered and as-received SAE5160 steels with and without a surface micro-notch. Some S-N specimens and stabilizer bars were shot-peened to improve the fatigue strength due to creation of compressive surface residue stresses and by surface plastic strain and others samples received a surface micro-notch of 0.3 mm depth introduced by EDM process. The crack growth evaluation at micro-notch was made comparatively with da/dN-ΔK curves in CT specimens. The proposed experimental study consists of comparative analysis of da/dN-ΔK and S-N curves, fractographic and, metallographic analysis, stabilizer bar bench tests, and after that, it is intended to show the relevant aspects of two microstructural classes currently specified for stabilizer bars, the beneficial effects obtained by shot peening and the bad influences of surface micro-notches.
Technical Paper

Camshaft Hardened by Remelting Process - A New Alternative for Usage Combined with Roller Finger Follower

2004-11-16
2004-01-3287
The current study has the proposal to approach the differences in dynamic behavior between camshaft manufactured in the traditional gray cast iron and an alloyed gray cast iron with the improvement on mechanical properties in order to stresses found on roller finger follower applied systems. The main objective of this paper is to show that camshaft made of modified gray cast iron and heat treated through the remelting process is still a good solution for application with roller finger followers systems which requires higher wear resistance standards. The proposed experimental study consists of comparative analysis of microstructure and hardness, dynamometers tests, dimensional measurements of camshafts, and after that, intends to show the higher performance of this manufacturing process in more severe applications of internal combustion engines.
Technical Paper

Modeling Automotive Assembly Lines with Generalized Stochastic Petri Nets and Markov Decision Processes with Imprecise Probabilities

2008-10-07
2008-36-0143
This paper proposes a methodology for automotive manufacturing lines scheduling. This methodology is based on generalized stochastic Petri Nets and Markov decision processes with imprecise probabilities. The usual generalized stochastic Petri Nets is extended by allowing imprecision about probabilities to be explicitly represented and by human task time graph of different products to be attached. Once the system is modeled using this tool and its extensions, we translate the resulting models into Markov decision processes with imprecise probabilities, in order to compute optimal policies that will result in the line scheduling. This paper introduces an algorithm that performs this translation.
Technical Paper

OVERVIEW OF AUTOMOTIVE COMPONENT FAILURES

2000-12-01
2000-01-3231
The present work gives an overview of the current situation of failures that may occur in automotive components, showing their distribution in the vehicle and the causes that make them occur, trying to emphasize the different materials which are used in the manufacturing of these components. This work is a technical approach strictly supported by an engineering concept which aims to discuss the different factors which contribute to cause premature failures of automotive components, prior to their utilization in the field or when they are exposed to the most variable conditions of use. One of the most important objectives of this study is to call the attention of design engineers, research engineers and manufacturing people to the importance of the components integrity which shall be taken into primary consideration in the design phase as well as in the specification of the material and process of manufacturing.
Technical Paper

Passenger Vehicle Driver's Lower Limbs Ergonomics through the Development of Biomechanical Models

2015-09-22
2015-36-0205
Vehicle ergonomics, more specifically driver ergonomics, has been the subject of interest in the automotive industry as a way to provide customers vehicles that have more than modern project, efficiency and competitive price. The driver ergonomics is related to the way the driver interacts with the vehicle interior, particularly, with the seat, hand and foot controls, considering aspects such as ease of access, space, proper upper and lower limb motion and drivers comfort and fatigue. Regarding the lower limbs, the driver’s comfort can be evaluated in terms of joint moments and muscle forces, which are influenced by the hip, knee and ankle joint angles, which in turn depend on the distances between the seat and pedal. Variations in seat to pedal horizontal or vertical distances will result in different angular positions and, consequently, different joint moments and muscle forces, which are associated to greater or lower muscular activations and greater or lower driver’s fatigue.
X