Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Life-Cycle Environmental Impact of Michelin Tweel® Tire for Passenger Vehicles

2011-04-12
2011-01-0093
Recently Michelin has been developing a new airless, integrated tire and wheel combination called the Tweel® tire. The Tweel tire aims at performance levels beyond those possible with conventional pneumatic technology because of its shear band design, added suspension, and potentially decreased rolling resistance. In this paper, we will focus on the environmental impact of the Tweel tire during its life-cycle from manufacturing, through use and disposal. Since the Tweel tire is currently still in the research phase and is not manufactured and used on a large scale, there are uncertainties with respect to end-of-life scenarios and rolling resistance estimates that will affect the LCA. Nevertheless, some preliminary conclusions of the Tweel tire's environmental performance in comparison to a conventional radial tire can be drawn.
Journal Article

Power-Split HEV Control Strategy Development with Refined Engine Transients

2012-04-16
2012-01-0629
Power-split hybrid-electric vehicles (HEVs) employ two power paths between the internal combustion (IC) engine and the driven wheels routed through gearing and electric machines (EMs) composing an electrically variable transmission (EVT). The EVT allows IC engine control such that rotational speed can be independent of vehicle speed at all times. By breaking the rigid mechanical connection between the IC engine and the driven wheels, the EVT allows the IC engine to operate in the most efficient region of its characteristic brake specific fuel consumption (BSFC) map. If the most efficient IC engine operating point produces more power than is requested by the driver, the excess IC engine power can be stored in the energy storage system (ESS) and used later. Conversely, if the most efficient IC engine operating point does not meet the power request of the driver, the ESS delivers the difference to the wheels through the EMs.
Technical Paper

Lookie Here! Designing Directional User Indicators across Displays in Conditional Driving Automation

2020-04-14
2020-01-1201
With the advent of autonomous vehicles, the human driver’s attention will slowly be relinquished from the driving task. It will allow drivers to participate in more non-driving related activities, such as engaging with information and entertainment systems. However, the automated driving system would need to notify the driver of upcoming points-of-interest on the road when the driver’s attention is focused on their screen rather than on the road or driving display. In this paper, we investigated whether providing directional alerts for an upcoming point-of-interest (POI) in or around the user’s active screen can augment their ability in relocating their visual attention to the POI on the road when traveling in a vehicle with Conditional Driving Automation. A user study (N = 15) was conducted to compare solutions for alerts that presented themselves in the participants’ central and peripheral field of view.
Technical Paper

Design Optimization of a Plug-In Hybrid Electric Vehicle

2007-04-16
2007-01-1545
A plug-in hybrid electric vehicle (PHEV) design with design parameters electric motor size, engine size, battery capacity, and battery chemistry type, is optimized with minimum cost as a measure of merit. The PHEV is required to meet a fixed set of performance constraints consisting of 0-60 mph acceleration, 50-70 mph acceleration, 0-30 mph acceleration in all electric operation, top speed, grade ability, and all electric range. The optimization is carried out for values of all electric range of 10, 20, and 40 miles. The social and economic impacts of the optimum designs in terms of reduced gasoline consumption and carbon emissions reduction are calculated. Argonne National Laboratory's Powertrain Systems Analysis Toolkit is used to simulate the performance and fuel economy of the PHEV designs. The costs of different PHEV components and the present value of battery replacements over the vehicle's life are used to determine the design's drivetrain cost.
Technical Paper

Trail-Braking Driver Input Parameterization for General Corner Geometry

2008-01-02
2008-01-2986
Trail-Braking (TB) is a common cornering technique used in rally racing to negotiate tight corners at (moderately) high speeds. In a previous paper by the authors it has been shown that TB can be generated as the solution to the minimum-time cornering problem, subject to fixed final positioning of the vehicle after the corner. A TB maneuver can then be computed by solving a non-linear programming (NLP). In this work we formulate an optimization problem by relaxing the final positioning of the vehicle with respect to the width of the road in order to study the optimality of late-apex trajectories typically followed by rally drivers. We test the results on a variety of corners. The optimal control inputs are approximated by simple piecewise linear input profiles defined by a small number of parameters. It is shown that the proposed input parameterization can generate close to optimal TB along the various corner geometries.
Technical Paper

An Analytic Foundation for the Two-Mode Hybrid-Electric Powertrain with a Comparison to the Single-Mode Toyota Prius THS-II Powertrain

2009-04-20
2009-01-1321
General Motors has introduced a Two-Mode Transmission (2-MT) that provides significant improvements over the Toyota THS-II transmission. These improvements are achieved by employing additional planetaries with clutches and brakes to switch from a Mode-1 to Mode-2 as vehicle speed increases. In addition the 2-MT has four fixed-gear ratios that provide for a purely mechanical energy path from the IC engine to the driven wheels with the electric machines also able to provide additional driving torque. The purpose of this present paper is to extend the methodology in a previous paper [1] to include the 2-MT, thereby presenting an analytic foundation for its operation. The main contribution in this analysis is in the definition of dimensionless separation factors, defined in each mode that govern the power split between the parallel mechanical and electrical energy paths from the IC engine to the driven wheels.
Technical Paper

Battery Modeling for HEV Simulation Model Development

2001-03-05
2001-01-0960
Battery modeling is of major concern for Hybrid Electric Vehicle (HEV) and Electric vehicle (EV) modeling. The major issue lies in characterizing the battery power output in relation to battery's State of Charge (SOC) in various application conditions. In particular, the challenge is associated with the difficulty that the characteristic parameters of the battery, i.e. the accurate data on the open circuit voltage and the internal resistance are hardly obtainable in practical conditions. In this paper, a battery capacity representation and a practical way of battery modeling is introduced for simulation model development based on the experimental data. A realistic way of battery SOC representation is generated from the battery output data. Empirical formulation is derived from the data to correlate the battery current, voltage output with the battery SOC.
Technical Paper

Impact of Configuration and Requirements on the Sonic Boom of a Quiet Supersonic Jet

2002-11-05
2002-01-2930
Market forecasts predict a potentially large market for a Quiet Supersonic Business Jet provided that several technical hurdles are overcome prior to fielding such a vehicle. In order to be economically viable, the QSJ must be able to fly at supersonic speeds overland and operate from regional airports in addition to meeting government noise and emission requirements. As a result of these conflicting constraints on the design, the process of selecting a configuration for low sonic boom is a difficult one. Response Surface Methodology along with physics-based analysis tools were used to create an environment in which the sonic boom can be studied as a function of design and mission parameters. Ten disciplinary codes were linked with a sizing and synthesis code by using a commercial wrapper in order to calculate the required responses with the desired level of fidelity.
Technical Paper

Georgia Tech's FutureTruck Split-Parallel Hybrid SUV Design

2003-03-03
2003-01-1270
The Georgia Tech FutureTruck Team has designed a strong parallel split-hybrid powertrain for the model year 2002 Ford Explorer SUV. The modified powertrain uses a Lincoln LS 3.0L, V-6, DOHC, aluminum engine driving the rear axle. An AC-150 from AC Propulsion is coupled to the front wheels through a 3.75:1 Auburn Gear speed reducer. This split-hybrid structure fits well into the Explorer and is to manufacture. The interior cabin has been maintained in a stock configuration by carefully integrating the added instrumentation and electric drive controls into the dash and console. The toque-blending hybrid electric control is designed to be charge sustaining such that the refueling procedures match those of the stock vehicle. When fully operational, this powertrain is expected to yield a net 25% increase in fuel efficiency while lowering emissions without any sacrifice in customer acceptability.
Technical Paper

Experimental Investigation of Dither Control on Effective Braking Torque

2003-05-05
2003-01-1617
Automotive brake squeal is a problem that has plagued the automotive industry for years. Many noise cancellation techniques have been published. One such technique is the use of an external dither signal, that has been shown to suppress automotive disc brake squeal in experiments with a brake dynamometer, but the effect of this control on the system's braking torque has yet to be determined. By imposing a high frequency disturbance normally into the brake pad, squeal is suppressed. There are many studies that lead to the conclusion of a lower effective braking torque due to the high frequency dither control signal. Under the assumption of Hertzian contact stiffness it has been speculated that the loss in braking torque is due to a lowering of the average normal force. There has also been work done that proves that the application of a dither signal in the normal direction eliminates the ‘stick-slip’ oscillation that causes brake squeal by an effective decrease in the friction force.
Technical Paper

The Successful Personal Air Vehicle: Business Case Risk Reduction

2006-08-30
2006-01-2431
The development of a universal personal air vehicle has been the dream of aeronautical visionaries since before the time of the Wright brothers' first flight. Through fits and starts the modern general aviation market developed both before and after the Second World War. However, the true personal airplane, one that rivals the automobile, has never emerged. There are a multitude of reasons for this; however, it is not possible to identify any single cause as the key component. Instead it is the complex interaction of regulations, market size, and technical and program risk. This paper shows that in the current environment there are few truly technical barriers to the development of a low-cost personal air vehicle. Instead, the market, regulatory, and program issues have come to dominate the problem. This means that the current impediment to the development of personal air vehicles is essentially an issue of finding a means to “close the business case.”
Technical Paper

A Generalized Model for Vehicle Thermodynamic Loss Management and Technology Concept Evaluation

2000-10-10
2000-01-5562
The objective of this paper is to develop a generalized loss management model to account for the usage of thermodynamic work potential in vehicles of any type. The key to accomplishing this is creation of a differential representation for vehicle loss as a function of operating condition. This differential model is then integrated through time to obtain an analytical estimate for total usage (and loss) of work potential consumed by each loss mechanism present during vehicle operation. The end result of this analysis is a better understanding of how the work potential initially present in the fuel, batteries, etc. is partitioned amongst all losses relevant to the vehicle's operation. The loss partitioning estimated from this loss management model can be used in conjunction with cost accounting systems to gain a better understanding of underlying drivers on vehicle manufacturing and operating costs.
Technical Paper

Control of PHEV and HEV Parallel Powertrains Using a Sequential Linearization Algorithm

2015-04-14
2015-01-1219
Using measurable physical input variables, an implementable control algorithm for parallel architecture plug-in and non-plug-in hybrid electric vehicle (PHEV and HEV) powertrains is presented. The control of the electric drive is based on an algebraic mapping of the accelerator pedal position, the battery state-of-charge (SOC), and the vehicle velocity into a motor controller input torque command. This mapping is developed using a sequential linearization control (SLC) methodology. The internal combustion engine (ICE) control uses a modified accelerator pedal to throttle plate angle using an adjustable gain parameter that, in turn, determines the sustained battery SOC. Searches over an admissible control space or the use of pre-defined look-up tables are thus avoided. Actual on-road results for a Ford Explorer with a through-the-road (TTR) hybrid powertrain using this control methodology are presented.
Technical Paper

High-Performance Plug-In Hybrid Electric Vehicle Design Studies and Considerations

2015-04-14
2015-01-1158
This paper presents a detailed design study and associated considerations supporting the development of high-performance plug-in hybrid electric vehicles (PHEVs). Due to increasingly strict governmental regulations and increased consumer demand, automotive manufacturers have been tasked with the reduction of fuel consumption and greenhouse gas (GHG) emissions. PHEV powertrains can provide a needed balance in terms of fuel economy and vehicle performance by exploiting regenerative braking, pure electric vehicle operation, engine load-point shifting, and power-enhancing hybrid traction modes. Thus, properly designed PHEV powertrains can reduce fuel consumption while increasing vehicle utility and performance.
Journal Article

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft

2020-03-10
2020-01-0050
Hybrid-electric gas turbine generators are considered a promising technology for more efficient and sustainable air transportation. The Ohio State University is leading the NASA University Leadership Initiative (ULI) Electric Propulsion: Challenges and Opportunities, focused on the design and demonstration of advanced components and systems to enable high-efficiency hybrid turboelectric powertrains in regional aircraft to be deployed in 2030. Within this large effort, the team is optimizing the design of the battery energy storage system (ESS) and, concurrently, developing a supervisory energy management strategy for the hybrid system to reduce fuel burn while mitigating the impact on the ESS life. In this paper, an energy-based model was developed to predict the performance of a battery-hybrid turboelectric distributed-propulsion (BHTeDP) regional jet.
Technical Paper

Robust Trajectory Tracking Control for Intelligent Connected Vehicle Swarm System

2022-12-22
2022-01-7083
An intelligent connected vehicle (ICV) swarm system that includes N vehicles is considered. Based on the special properties of potential functions, a kinematic model describing the swarm performances is proposed, which allows all vehicles to enclose the tracking target and show both tracking and formation characteristics. Treating the performances as the desired constraints, the analytical form of constraint forces can be obtained inspired by the Udwadia-Kalaba approaches. A special approach of uncertainty decomposition to deal with uncertain interferences is proposed, and a switching-type robust control method is addressed for each vehicle agent in the swarm system. The features and validity of the addressed control are demonstrated in the numerical simulations.
X