Refine Your Search

Topic

Author

Search Results

Journal Article

State of the Art and Future Trends of Electric Drives and Power Electronics for Automotive Engineering

2014-04-01
2014-01-1888
Discussions about the optimal technology of propulsion systems for future ground vehicles have been raising over the last few years. Several options include different types of technologies. However, those who are advocating conventional internal combustion engines are faced with the fact that fossil fuels are limited. Others favor hydrogen fuel as the solution for the future, either in combination with combustion engines or as an energy carrier for fuel cells. In any case, the production and storage of hydrogen is an ongoing challenge of numerous research works. Finally, there are battery-electric or hybrid propulsion systems in use, gaining more and more popularity worldwide. Ongoing advances in power electronics help to improve control systems within automotive applications. New developed or designed components enable more efficient system architectures and control.
Journal Article

Evaporation and Cold Start Behavior of Bio-Fuels in Non-Automotive Applications

2016-11-08
2016-32-0034
Worldwide increasing energy consumption, decreasing energy resources and continuous restriction of emission legislation cause a rethinking in the development of internal combustion engines and fuels. Alternative renewable fuels, so called bio-fuels, have the potential to contribute to environmentally friendly propulsion systems. This study concentrates on the usage of alcohol fuels like ethanol, methanol and butanol in non-automotive high power engines, handheld power tools and garden equipment with the focus on mixture formation and cold start capability. Although bio-fuels have been investigated intensely for the use in automotive applications yet, the different propulsion systems and operation scenarios of nonautomotive applications raise the need for specific research. A zero dimensional vaporization model has been set up to calculate the connections between physical properties and mixture formation.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Journal Article

A ‘Microscopic’ Structural Mechanics FE Model of a Lithium-Ion Pouch Cell for Quasi-Static Load Cases

2013-04-08
2013-01-1519
This study deals with the experimental investigation of the mechanical properties of a lithium-ion pouch cell and its modelling in an explicit finite element simulation code. One can distinguish between ‘macroscopic’ and ‘microscopic’ modelling approaches. In the ‘macroscopic’ approach, one material model approximates the behaviour of multiple inner cell layers. In the ‘microscopic’ approach, which is used in the present study, all layers and their interactions are modelled separately. The cell under study is a pouch-type lithium-ion cell with a liquid electrolyte. With its cell chemistry, design, size and capacity it is usable for automotive applications and can be assembled into traction batteries. One cell sample was fully discharged and disassembled, and its components (anode, cathode, separator and pouch) were examined and measured by electron microscopy. Components were also tensile tested.
Journal Article

Evaluation of Valve Train Variability in Diesel Engines

2015-09-06
2015-24-2532
The continuously decreasing emission limits lead to a growing importance of exhaust aftertreatment in Diesel engines. Hence, methods for achieving a rapid catalyst light-off after engine cold start and for maintaining the catalyst temperature during low load operation will become more and more necessary. The present work evaluates several valve timing strategies concerning their ability for doing so. For this purpose, simulations as well as experimental investigations were conducted. A special focus of simulation was on pointing out the relevance of exhaust temperature, mass flow and enthalpy for these thermomanagement tasks. An increase of exhaust temperature is beneficial for both catalyst heat-up and maintaining catalyst temperature. In case of the exhaust mass flow, high values are advantageous only in case of a catalyst heat-up process, while maintaining catalyst temperature is supported by a low mass flow.
Technical Paper

Methodology for Automated Fault Diagnosis at Engine Test Beds

2017-01-10
2017-26-0326
Experimental investigations on engine test beds represent a significant cost in engine development. To reduce development time and related costs, it is necessary to check the quality of measurements automatically whenever possible directly on the test bed to allow early detection of faults. A fault diagnosis system should provide information about the presence, cause and magnitude of an inconsistency in measurement. The main challenge in developing such a system is to detect the fault quickly and reliably. However, only faults that have actually occurred should be detected because the user will only adopt a system that provides accurate results. This paper presents a methodology for automated fault diagnosis at engine test beds, starting with an explanation of the general procedure. Next, the methods applied for fault detection are introduced.
Technical Paper

Challenges and Solutions for Range Extenders - From Concept Considerations to Practical Experiences

2011-06-09
2011-37-0019
For a broad acceptance of electric vehicles, the trade-off between all electric range and battery cost respectively weight represents the most important challenge. The all electric range obtained under real world conditions most often deviates significantly from the nominal value which is measured under idealized conditions. Under extreme conditions - slow traffic and demanding requirements for cabin heating or cooling - the electrical range might become less a question of spatial distance but even more of total operation time. Whereas with conventional powertrain, high flexibility of the total driving range can be obtained without sacrificing cost, with a pure battery vehicle this results in extreme high cost and weight of the energy storage. Therefore the difference between the typical daily driving range (e.g. in Germany 80-90% is below 50 km) and the minimum total range requested by most customers for acceptance of battery vehicles (200- 250 km), becomes essential.
Technical Paper

Mechanical Design of In-Wheel Motor Driven Vehicles with Torque-Vectoring

2011-10-04
2011-36-0132
Volatile oil prices and increased environmental sensitivity together with political concerns have moved the attention of governments, automobile manufacturers and customers to alternative power trains. From the actual point of view the most promising concepts for future passenger cars are based on the conversion of electrical into mechanical energy. In-wheel motors are an interesting concept towards vehicle electrification that provides also high potentials to improve vehicle dynamics and handling. Beside aspects concerning the electric system (e.g. motor type, energy storage, and control strategy), there are also some open questions related with the mechanical design of in-wheel motor driven vehicles that need to be solved before series production.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

Lifecycle Carbon Footprint Calculation of Hand-Held Tool Propulsion Concepts

2023-04-11
2023-01-0553
Following the recent trend in the automotive industry, hybrid and pure electric powertrain systems are more and more preferred over conventional combustion powertrain systems due to their significant potential to reduce greenhouse-gas emissions. Although electric powertrains do not produce direct emissions during their operational time, the indirect emissions over their whole life cycle have to be taken into consideration. In this direction, the carbon footprint due to the electrification of the hand-held power tool industry needs to be examined in the preliminary design phase. In this paper, after defining the carbon footprint calculation framework, assumptions and simplifications used for the calculations, a direct comparison of the total carbon dioxide equivalent (CO2eq) emissions of three equivalent power and range powertrain systems - a combustion-driven, a hybrid-driven, and a cordless electric-driven - is presented.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Technical Paper

Strategies for Emission Reduction on Small Capacity Two-Wheelers with Regard to Future Legislative Limits

2014-11-11
2014-32-0031
Looking at upcoming emission legislations for two-wheelers, it is quite obvious that the fulfilment of these targets will become one of the biggest challenges within the engine development process. The gradual harmonization of emission limits for two-wheelers with existing automotive standards will subsequently lead to new approaches regarding mixture preparation and exhaust gas aftertreatment. Referring to these future scenarios, a state-of-the-art in development of catalytic converters for two- or three-wheeler applications should be presented. After choosing a suitable test carrier, which has already been equipped with EFI components including an oxygen sensor for λ=1 operation mode, a basic injection system calibration was used to optimize the combustion process. Based on this setup, a variable exhaust system was manufactured to be able to integrate different catalyst configurations.
Technical Paper

A New Approach to an Adaptive and Predictive Operation Strategy for PHEVs

2015-04-14
2015-01-1222
These days a new generation of hybrid electric vehicles (HEV) are penetrating the global vehicle market - the plug-in hybrid electric vehicles (PHEVs). Compared to conventional HEVs, PHEVs have additional significant potential. They are able to improve fuel efficiency and reduce local emissions due to higher battery capacities, and they can be recharged from external outlets. Energy management has a major impact on the PHEVs performance. In this publication, an innovative operation strategy for PHEVs is presented. This is due to the fact that both increasing fuel efficiency and enhancing the vehicle's longitudinal performance requires a fine balance between the consumption of fossil and electric energy. The new operation strategy combines advanced predictive and adaptive algorithms. In contrast to the charge-sustaining strategy of HEVs, the charge-depleting mode for PHEVs is more appropriate.
Technical Paper

Impact of 3-way catalytic converters on particulate emission of MPFI motorcycle engines

2022-01-09
2022-32-0004
Due to climatic movements and politics, there is no doubt that a stricter emission legislation will soon face the two-wheeler sector and their manufacturers with new challenges. Additional to the already limited pollutants, a limitation of particulate number will probably also be introduced, which means that there is an urgent need for action in exhaust gas after treatment and particulate reduction systems. For natural aspirated, port injected engines, as used in two-wheeler-technologies, conventional systems already established in passenger cars are not necessarily applicable. Moreover, the emission spectrum is fundamentally different from passenger car engines due to the better homogenization of they typically used MPFI engine types. Adapting conventional particulate filter technologies to the finer particles of MPFI engines would result in a disproportionately larger exhaust backpressure.
Technical Paper

Improvement of the EGR Dilution Tolerance in Gasoline Engines by the Use of a HSASI Pre-Chamber Spark Plug

2023-10-24
2023-01-1805
Charge dilution in gasoline engines reduces NOx emissions and wall heat losses by the lower combustion temperature. Furthermore, under part load conditions de-throttling allows the reduction of pumping losses and thus higher engine efficiency. In contrast to lean burn, charge dilution by exhaust gas recirculation (EGR) under stoichiometric combustion conditions enables the use of an effective three-way catalyst. A pre-chamber spark plug with hot surface-assisted spark ignition (HSASI) was developed at the UAS Karlsruhe to overcome the drawbacks of charge dilution, especially under part load or cold start conditions, such as inhibited ignition and slow flame speed, and to even enable a further increase of the dilution rate. The influence of the HSASI pre-chamber spark plug on the heat release under EGR dilution and stoichiometric conditions was investigated on a single-cylinder gasoline engine.
Technical Paper

A Demonstration of Emissions' Behaviour of Various Handheld Engines Including Investigations on Particulate Matter

2013-10-15
2013-32-9130
To get an overview of the emission situation in the field of small non-road mobile machinery powered by various types of SI engines, the Association for Emissions Control by Catalyst (AECC), together with the Institute for Internal Combustion Engines and Thermodynamics (IVT) of Graz University of Technology, conducted a customized test program. The main goal for this campaign was to derive information regarding the emissions of regulated gaseous components (following European Directive 97/68/EC) as well as particulate matter. With regard to the big variety of different engines that are available on the European and North-American market, the most representative ones had to be chosen. This resulted in a pool of test devices to cover different engine working principles (2-Stroke and 4-Stroke), technological standards (low-cost and professional tools) and different emissions control strategies (advanced combustion and exhaust gas aftertreatment).
Technical Paper

Concept Study of Range Extender Applications in Electric Scooters

2011-11-08
2011-32-0592
Nowadays, politicians are forced by air pollution prevention to demand zero emission vehicles (ZEV) in the form of pure electric vehicles. The poor capacity to weight factor of actual batteries compared to any kind of liquid or gaseous hydro-carbon fuel is the main reason for the retarded implementation of ZEV. Solutions offered by automobile manufacturers are mild to full hybrid powertrains based on the well established ICE platform. The difficulty of those approaches of electrification is to compete with the performance and benefit costumers expect from standard automobiles. Pure electric vehicles are rare and often disappointing regarding range and/or performance. Additionally the costs for such vehicles, which are mainly driven by the battery prices, are comparatively high, impeding their market entrance and acceptance. Low price electric city scooters are actually offered as pure electric vehicles in a wide variety of different models.
Technical Paper

Expansion to Higher Efficiency - Experimental Investigations of the Atkinson Cycle in Small Combustion Engines

2015-11-17
2015-32-0809
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson cycle, realized over the crank drive, has attracted increasing attention. Several OEMs have been doing investigations on this efficiency-increasing principle with in the whole range from small engines up to automotive ones. In previous publications, the authors stated that an indicated efficiency of up to 48% could be reached with an Atkinson cycle-based engine. However, these studies are based on 1D-CFD simulation. To verify the promising simulation results, a prototype engine, based on the Atkinson principle, was designed and experimentally tested. The aim of the present study is to evaluate and validate the (indicated) engine efficiency gained by experimental tests compared to the predicted simulation results. In order to investigate part load behavior, several valve timing strategies were also developed and tested.
Journal Article

Investigation on transient behavior and SoC balancing of a hybrid powertrain hand-held tool

2022-01-09
2022-32-0025
A transient behavior investigation of a hybrid hand-held tool is carried out on near real load conditions, through a hybrid experimental and simulative study. As this study focuses on handheld tools with a varied or transient load operation like chainsaws and brush cutters, a use of a blower tool as a test-carrier and a throttle body implementation on its blower air pipe adds a controllable braking mechanism. This allows for driving varied load cycles without the need of a testbench. Experimental investigation takes place at both start-up, shut-down and load conditions and for different drive control and commutation modes of electric motor. The controller characterization and parameter selection are done. After the load cycles are driven on the test-carrier, the characterizing data are transferred to the MATLAB and Simulink simulation model to correct and calibrate its transient behavior.
X