Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Steam Gasification and Reformation of Spacecraft Wastes

1997-07-01
972273
A two-stage steam gasification and reforming process was evaluated for converting wastes generated within enclosed habitable environments into synthesis gas (CO & H2) and other recyclable inorganic species, i.e. water, CO2 and inorganic salts. Waste compounds used in the experimentation included: cellulose; urea; methionine; sucrose; butyric acid; Igepon TC-42 - a particularly (chemically) stable soap selected by NASA for use in space life support systems; wheat straw and a high density polyethylene. The compounds were tested individually and in combination to simulate the wastes anticipated within enclosed habitat environments.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV(Crew Return Vehicle) Orbital Heat Sink

1997-07-01
972411
A porous plate sublimator (an existing Lunar Module design) is being evaluated as the heat sink for the X-38 vehicle due to its simplicity, reliability, and flight readiness. It is ideally suited for the X-38/CRV as it requires no active control, has no moving parts, has 100 % water usage efficiency, and is a well-proven technology. This paper presents sublimator performance, including ground test data at CRV conditions, at both a component and system level. Potential sublimator modifications which could allow significant CRV ECLSS system simplification, reliability enhancement, and cost reduction are also discussed.
Technical Paper

Testing of Russian ECLSS - Sabatier and Potable Water Processor

1994-06-01
941252
Hamilton Standard Space Systems International, Inc. (HSSSI) has obtained and is currently testing a variety of Russian life support hardware. These units have been or are contemplated for use on Mir I and II space stations. This paper presents the current status of performance testing of a Sabatier Carbon Dioxide Processing Unit (CDPU) and components of a Potable Water Processing System (PWP). These systems were fabricated by NIICHIMMASH, the supplier of these units to the Russian space program. It is the intent of this testing program to obtain a data base for technology comparisons to support planned and future international missions. For the CDPU, reactant conversion efficiencies in excess of 99 percent have been noted for the variation in test conditions with 2 to 6 man processing (flows) tested. The CDPU's effluent water has been produced at anticipated rates and is relatively contaminant free.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV (Crew Return Vehicle) Orbital Heat Sink

1999-07-12
1999-01-2004
A porous plate sublimator (based on an existing Lunar Module LM-209 design) is baselined as a heat rejection device for the X-38 vehicle due to its simplicity, reliability, and flight readiness. The sublimator is a passive device used for rejecting heat to the vacuum of space by sublimating water to obtain efficient heat rejection in excess of 1,000 Btu/lb of water. It is ideally suited for the X-38/CRV mission as it requires no active control, has no moving parts, has 100% water usage efficiency, and is a well-proven technology. Two sublimators have been built and tested for the X-38 program, one of which will fly on the NASA V-201 space flight demonstrator vehicle in 2001. The units satisfied all X-38 requirements with margin and have demonstrated excellent performance. Minor design changes were made to the LM-209 design for improved manufacturability and parts obsolescence.
Technical Paper

Parametric Impacts on Sabatier Water Production Capability

1999-07-12
1999-01-2121
The generation (and recovery) of water, rather than the reduction of CO2, drives the requirements for the integration of a Sabatier CO2 Reduction Subsystem (SCRS) within an Air Revitalization Subsystem (ARS). It is important, therefore, to understand the system level decisions that impact the water production capability of the Sabatier CO2 Reduction Subsystem. This paper defines each of the operational parameters that affect water production and loss and explores the impact they each have on total water recovery. The particular subsystem parameters examined include hydrogen and carbon dioxide flow rates, feed gas composition, subsystem operating pressure, condensing heat exchanger performance, heat sink temperature, and phase separator performance. Each of these has a minor contribution to the amount of water lost from the system, but combined, their effect is substantial.
X