Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Fractal Dimension Growth Model for SI Engine Combustion

2004-06-08
2004-01-1993
Time-resolved continuous images of wrinkling flame front cross-sections were acquired by a laser-light sheet technique in an optically accessible spark ignition engine. The test engine was operated at various engine speeds and compression ratios. The fractal dimension of the curve, D2, was measured in a time series for each cycle. Analysis of the data shows that as the flame propagates the fractal dimension, D2, is close to unity a short time after spark ignition and then increases. Examination of the relationship between the growth rate of the fractal dimension, ΔD2/Δt, and D2 reveals that the higher D2 is, the lower ΔD2/Δt becomes. An Empirical equation for ΔD2/Δt was derived as a function of the ratio of the turbulence intensity to the laminar burning velocity and pressure. This model was tested in an SI engine combustion simulation, and results compared favorably with experimental data.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Technical Paper

Development of Breath-Alcohol-Detection System

2016-04-05
2016-01-1498
The problem of high fatal accident rates due to drunk driving persists, and must be reduced. This paper reports on a prototype system mounted on a car mock-up and a prototype portable system that enables the checking of the drivers’ sobriety using a breath-alcohol sensor. The sensor unit consists of a water-vapor-sensor and three semiconductor gas sensors for ethanol, acetaldehyde, and hydrogen. One of the systems’ features is that they can detect water vapor from human-exhaled breath to prevent false detection with fake gases. Each gas concentration was calculated by applying an algorithm based on a differential evolution method. To quickly detect the water vapor in exhaled breath, we applied an AC voltage between the two electrodes of the breath-water-vapor sensor and used our alcohol-detection algorithm. The ethanol level was automatically calculated from the three gas sensors as soon as the water vapor was detected.
Technical Paper

Water Recycling System for CELSS Environment in Space

1990-07-01
901208
System configurations of water recycling for space use have been continued through theoretical and experimental studies. The water recycling system plays a central role in a Closed Ecological Life Support System (CELSS) which offers necessary environment and life styles in closed environment such as space stations, lunar bases, etc.. Membrane technology is a possible candidate for purifying waste water produced by crew use facility, plant cultivation facility, etc. In considerations of the system compactness realizing energy saving, membrane distillation has been revealed to be a suitable purification process. Ground experiments has been performed using membrane filtration processes and membrane distillation process. Thermopervaporation technology with hydrophobic membrane is utilized in the distillation process. The energy saving is achieved by thermal return of condensation energy.
Technical Paper

Evaluation of Hitachi Electric Vehicle Combined Battery System Lifespan in India

2018-04-03
2018-01-0447
We have developed a drive cycle (DC) to test Hitachi’s combined battery system (CBS) for electric vehicles (EVs) having battery lifespan enhancements. Conventionally EV batteries consist of high energy density cells, and we call them as energy cells (EC). A major issue with the EVs is high operational costs mainly due to short lifespan of the ECs. CBS almost doubles the EC and thus overall battery system lifespan, as per the evaluation over a WLTP based method. We want to test the CBS under Indian conditions which has predominantly hot weather, and traffic jam scenarios. Battery deterioration and thus its lifespan is sensitive to traffic conditions and ambient temperature. Hence, it was needed to evaluate the CBS over an Indian DC and use 40°C as ambient temperature. However, it was difficult to carry out the tests since there is no standard Indian DC for small / light weight four wheelers.
Technical Paper

Compressible Turbulent Flow Analysis on Variable Nozzle Vane and Spacer in Turbocharger Turbine

2000-03-06
2000-01-0526
In order to develop a high-performance turbocharger turbine, compressible turbulent flow analysis is applied to the complicated flow around the nozzle vanes and the spacers. The flow analysis indicates that a combination of a curved nozzle vane and a round spacer causes a low-velocity region at the inner side of the nozzle vane even when the turbine efficiency is highest. As a result of the loss analysis, a teardrop-shaped spacer, which suppresses the low-velocity region and flow separation, is developed, and shown to improve the turbine efficiency. The easiness of the nozzle vane control is also important as well as the high efficiency. The fluid force on the nozzle vane depends on the flow pattern; therefore, the torque about the pivot of the nozzle vane is also numerically calculated.
X