Refine Your Search

Topic

Author

Search Results

Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Extension of Lean Burn Range by Intake Valve Offset

2013-10-15
2013-32-9032
Using a 109.2 cm3, four-stroke, single-cylinder, two-valve gasoline engine, improvement of fuel economy by extension of lean burn range has been attempted with invented way to intensify tumble flow from a simple mechanical arrangement. With a part of the intake valve was jutted out beyond the perimeter of the cylinder bore, the masking effects from the valve recess on top of the cylinder sleeve created a strong tumble flow, which enabled lean burn at an air fuel ratio leaner than the conventional design by two points. The motorcycle equipped with this engine attained better fuel economy by 5.7% to the base model when measured in Indian Driving Cycle (IDC). The outward-laid intake valve also increased the clearance from the exhaust valve, which enabled use of a large-diameter intake valve to minimize the reduction of maximum power.
Journal Article

A Study of Controlled Auto-Ignition in Small Natural Gas Engines

2013-10-15
2013-32-9098
Research has been conducted on Controlled Auto-Ignition (CAI) engine with natural gas. CAI engine has the potential to be highly efficient and to produce low emissions. CAI engine is potentially applicable to automobile engine. However due to narrow operating range, CAI engine for automobile engine which require various speed and load in real world operation is still remaining at research level. In comparison some natural gas engines for electricity generation only require continuous operation at constant load. There is possibility of efficiency enhancement by CAI combustion which is running same speed at constant load. Since natural gas is primary consisting of methane (CH4), high auto-ignition temperature is required to occur stable auto-ignition. Usually additional intake heat required to keep stable auto-ignition. To keep high compression temperature, single cylinder natural gas engine with high compression ratio (CR=26) was constructed.
Journal Article

Evaluation of the Performance of a Boosted HCCI Gasoline Engine with Blowdown Supercharge System

2013-10-15
2013-32-9172
HCCI combustion can realize low NOx and particulate emissions and high thermal efficiency. Therefore, HCCI combustion has a possibility of many kinds of applications, such as an automotive powertrain, general-purpose engine, motorcycle engine and electric generator. However, the operational range using HCCI combustion in terms of speed and load is restricted because the onset of ignition and the heat release rate cannot be controlled directly. For the extension of the operational range using either an external supercharger or a turbocharger is promising. The objective of this research is to investigate the effect of the intake pressure on the HCCI high load limit and HCCI combustion characteristics with blowdown supercharging (BDSC) system. The intake pressure (Pin) and temperature (Tin) were varied as experimental parameters. The intake pressure was swept from 100 kPa (naturally aspirated) to 200 kPa using an external mechanical supercharger.
Journal Article

Study of High-Compression-Ratio Engine Combined with an Ethanol-Gasoline Fuel Separation System

2014-10-13
2014-01-2614
Bio-ethanol is used in many areas of the world as ethanol blended gasoline at low concentrations such as “E10 gasoline”. In this study, a method was examined to effectively use this small amount of ethanol within ethanol blended gasoline to improve thermal efficiency and high-load performance in a high-compression-ratio engine. Ethanol blended gasoline was separated into high-concentration ethanol fuel and gasoline using a fuel separation system employing a membrane. High-ethanol-concentration fuel was selectively used at high-load conditions to suppress knocking. In this system, a method to decrease ethanol consumption is necessary to cover the wide range of engine operation. Lower ethanol consumption could be achieved by Miller-cycle operation because decrease of the effective compression ratio suppresses knocking. However, high-load operation was limited due to the decrease in intake air volume with Miller-cycle operation.
Journal Article

In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment

2016-04-05
2016-01-0894
A simple method is frequently used to calculate a reciprocating engine’s bearing load from the measured cylinder pressure. However, it has become apparent that engine downsizing and weight reduction cannot be achieved easily if an engine is designed based on the simple method. Because of this, an actual load on a bearing was measured, and the measured load values were compared with a bearing load distribution calculated from cylinder pressure. As a result, it was found that some of actual loads were about half of the calculated ones at certain crank angles. The connecting rod’s elastic deformation was focused on as a factor behind such differences, and the rod’s deformation due to the engine’s explosion load was studied. As a result, it was found that the rod part of the engine’s connecting rod was bent by 0.2 mm and became doglegged. Additional investigation regarding these findings would allow further engine downsizing.
Technical Paper

On Road Fuel Economy Impact by the Aerodynamic Specifications under the Natural Wind

2020-04-14
2020-01-0678
According to some papers, the label fuel economy and the actual fuel economy experienced by the customers may exhibit a gap. One of the reasons may stem from the aerodynamic drag variations due to the natural wind. The fuel consumption is measured through bench test under several driving modes by using the road load as input condition. The road load is measured through the coast down test under less wind ambient conditions as determined by each regulation. The present paper aims to analyze the natural wind conditions encountered by the vehicle on public roads and to operate a comparison between the fuel consumptions and the driving energy. In this paper, the driving energy is calculated by the aerodynamic drag from the natural wind specifications and driving conditions. This driving energy and the fuel consumptions show good correlation. The fuel consumption is obtained from the vehicle Engine control unit(ECU) data.
Technical Paper

Onboard Ethanol-Gasoline Separation System for Octane-on-Demand Vehicle

2020-04-14
2020-01-0350
Bioethanol is being used as an alternative fuel throughout the world based on considerations of reduction of CO2 emissions and sustainability. It is widely known that ethanol has an advantage of high anti-knock quality. In order to use the ethanol in ethanol-blended gasoline to control knocking, the research discussed in this paper sought to develop a fuel separation system that would separate ethanol-blended gasoline into a high-octane-number fuel (high-ethanol-concentration fuel) and a low-octane-number fuel (low-ethanol-concentration fuel) in the vehicle. The research developed a small fuel separation system, and employed a layout in which the system was fitted in the fuel tank based on considerations of reducing the effect on cabin space and maintaining safety in the event of a collision. The total volume of the components fitted in the fuel tank is 6.6 liters.
Technical Paper

LES Modeling Study on Cycle-to-Cycle Variations in a DISI Engine

2020-04-14
2020-01-0242
The reduction of cycle-to-cycle variations (CCV) is a prerequisite for the development and control of spark-ignition engines with increased efficiency and reduced engine-out emissions. To this end, Large-Eddy Simulations (LES) can improve the understanding of stochastic in-cylinder phenomena during the engine design process, if the employed modeling approach is sufficiently accurate. In this work, an inhouse code has been used to investigate CCV in a direct-injected spark ignition (DISI) engine under fuel-lean conditions with respect to a stoichiometric baseline operating point. It is shown that the crank angle when a characteristic fuel mass fraction is burned, e.g. MFB50, correlates with the equivalence ratio computed as a local average in the vicinity of the spark plug. The lean operating point exhibits significant CCV, which are shown to be correlated also with the in-cylinder subfilter-scale (SFS) kinetic energy.
Journal Article

Multi-Variable Air-Path Management for a Clean Diesel Engine Using Model Predictive Control

2009-04-20
2009-01-0733
Recently, emission regulations have been strict in many countries, and it is very difficult technical issue to reduce emissions of diesel cars. In order to reduce the emissions, various combustion technologies such as Massive EGR, PCCI, Rich combustion, etc. have been researched. The combustion technologies require precise control of the states of in-cylinder gas (air mass flow, EGR rate etc.). However, a conventional controller such as PID controller could not provide sufficient control accuracy of the states of in-cylinder gas because the air-pass system controlled by an EGR valve, a throttle valve, a variable nozzle turbo, etc. is a multi-input, multi-output (MIMO) coupled system. Model predictive control (MPC) is well known as the advanced MIMO control method for industrial process. Generally, the sampling period of industrial process is rather long so there is enough time to carry out the optimization calculation for MPC.
Journal Article

Investigation of Combustion Diagnosis System Applied for the Development of General Purpose Utility Engines

2012-10-23
2012-32-0100
The chief goal of engineers studying internal combustion engines is to improve energy efficiency in the face of the increasingly severe global warming and energy issues. Hence, there have been numerous studies focusing on the combustion reactions in order to develop clean and reliable combustion that is capable of operating using less fuel. And to improve the comprehension of engine performance and its combustion reactions, development of comprehensive measurement technique for engine performance, in-cylinder visualization technique, and numerical simulations, is essential and strongly demanded. There have hitherto been numerous studies about combustion diagnostics and analysis, including high-efficiency measurement techniques using response surface method the air-fuel mixture distribution and flame propagation measurement with optical visualization techniques, and numerical calculations of combustion reaction with elementary reactions.
Journal Article

Application of Electric Servo Brake System to Plug-In Hybrid Vehicle

2013-04-08
2013-01-0697
An electric servo brake system applied for use on electric vehicles was applied for use on plug-in hybrid vehicles in order to achieve fuel-savings together with good brake feel and enhanced operability for plug-in hybrid vehicles. The electric servo brake system is made up of highly accurate braking pressure control that functions cooperatively with regenerative brakes together with a structure in which pedal force is not influenced by braking pressure control. The configuration of these components enabled good braking feel even when the power train was being switched from one drive mode to another. Automated pressurization functions that are intended for plug-in hybrid vehicles and that operate with electric servo brake systems were also developed. These developed functions include stall cooperative control that functions cooperatively with the power train, regenerative coordinate adaptive cruise control, and hill-start assist.
Journal Article

Development of a New Two-Motor Plug-In Hybrid System

2013-04-08
2013-01-1476
A highly efficient two-motor plug-in hybrid system is developed to satisfy the global demands of CO2 reduction. This system switches three operation modes, what is called “EV Drive”, “Hybrid Drive” and “Engine Drive”, to maximize fuel efficiency according to the driving condition of the vehicle. Practical plug-in EV (Electric Vehicle) capability is also realized by adding a high-power on-board charger and a high capacity Li-ion battery to the original system. The outlines of the system components including a newly developed Atkinson cycle engine, a highly efficient electric coupled CVT (Continuously Variable Transmission) with built-in motor and generator, an integrated PCU (Power Control Unit) and an exclusive battery for plug-in HEV (Hybrid Electric Vehicle) are described in this paper. In addition to the switching of three driving modes and the efficiency improvement of each device, cooperative control of the hybrid system is introduced.
Journal Article

Prediction of Wear Loss of Exhaust Valve Seat of Gasoline Engine Based on Rig Test Result

2018-04-03
2018-01-0984
The purpose of this research was to predict the amount of wear on exhaust valve seats in durability testing of gasoline engines. Through the rig wear test, a prediction formula was constructed with multiple factors as variables. In the rig test, the wear rate was measured in some cases where a number of factors of valve seat wear were within a certain range. Through these tests, sensitivity for each factor was determined from the measured wear data, and then a prediction formula for calculating the amount of wear was constructed with high sensitivity factors. Combining the wear amount calculation formula with the operation mode of the actual engine, the wear amount in that mode can be calculated. The calculated wear amount showed a high correlation with the wear amount measured in bench tests and the wear amount measured in vehicle tests.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Journal Article

In-cylinder Optical Investigation of Combustion Behavior on a Fast Injection Rate Diesel Common Rail Injector

2011-08-30
2011-01-1821
The field of diesel combustion research is producing numerous reports on studies of premixed combustion, which promises simultaneous reduction of both NOx and soot, in order to meet increasingly stringent regulations on harmful emissions from automobiles. However, although premixed combustion can simultaneously reduce both NOx and soot, certain issues have been pointed out, including the fact that it emits greater quantities of unburned HC and CO gases and the fact that it limits the operating range. Furthermore, this combustion method sets the ignition delay longer with the aim of promoting the mixing of fuel and air. This raises issues with the product due to the combustion instability and sensitivity to the uneven fuel properties that are found on the market, the capability of the engine response under transient conditions, the deterioration in combustion noise, and so on.
Journal Article

Research on Clogging Mechanism of Multilayered Fuel Filters and Extension of Filter Life Span in Ethanol Blended Fuel

2011-11-08
2011-32-0570
Recently, the use of ethanol blended fuel is growing worldwide. Therefore, there is increasing needs for addressing issues relating to ethanol blended fuel use in gasoline engine fuel supply systems. In this paper, we focused on one of such issues, which is the reduced life of a multi-layered fuel filter used at inlet side of a fuel pump when it is used with ethanol blended fuel. In this study, we clarified that ethanol blended fuel tends to disperse dust particles contained in fuel to a greater extent than gasoline, and that it has a mechanism to accelerate clogging by concentrating the clogging only on the finest layer of the multi-layered filter. Also, in the process of clarifying this principle, we confirmed that dust particles dispersed by ethanol are coagulated when passing through the filter layers.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Journal Article

NOx Trap Three-Way Catalyst (N-TWC) Concept: TWC with NOx Adsorption Properties at Low Temperatures for Cold-Start Emission Control

2015-04-14
2015-01-1002
A new concept for trapping NOx and HC during cold start, the NOx Trap Three-Way Catalyst (N-TWC), is proposed. N-TWC adsorbs NOx at room temperature, and upon reaching activation temperature under suitable air-fuel ratio conditions, it reduces the adsorbed NOx. This allows a reduction in NOx emissions during cold start. N-TWC's reduction mechanism relies on NOx adsorption sites which are shown to be highly dispersed palladium on acid sites in the zeolite. Testing on an actual vehicle equipped with N-TWC confirmed that N-TWC is able to reduce emissions of NOx and HC during cold start, which is a challenge for conventional TWCs.
Journal Article

Method Using Multiple Regression Analysis to Separate Engine Radiation Noise into the Contributions of Combustion Noise and Mechanical Noise in the Time Domain

2014-04-01
2014-01-1678
A technique was created to separate the contributions of combustion noise and mechanical noise to engine noise in the time domain in order to achieve efficient measures for enhancing the sound quality of combustion noise. There is an existing technique based on 1/3 octave band analysis that is known as a method for separating the contributions to engine radiation noise, but this technique cannot provide time-domain data. Therefore, the author has proposed a technique that separates engine radiation noise into combustion noise and mechanical noise in the time domain by finding the combustion noise for each cylinder and calculating its structural response function by considering its real and imaginary components. Results of analysis of actual engine radiation noise with this technique confirmed that combustion noise, which is characterized by strong pulsation, and irregular mechanical noise can be separated in the time domain with good precision.
X