Refine Your Search

Topic

Author

Search Results

Journal Article

Health Ready Components-Unlocking the Potential of IVHM

2016-04-05
2016-01-0075
Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Journal Article

A Balanced Approach for Securing the OBD-II Port

2017-03-28
2017-01-1662
The On-Board Diagnostics II (OBD-II) port began as a means of extracting diagnostic information and supporting the right to repair. Self-driving vehicles and cellular dongles plugged into the OBD-II port were not anticipated. Researchers have shown that the cellular modem on an OBD-II dongle may be hacked, allowing the attacker to tamper with the vehicle brakes. ADAS, self-driving features and other vehicle functions may be vulnerable as well. The industry must balance the interests of multiple stakeholders including Original Equipment Manufacturers (OEMs) who are required to provide OBD function, repair shops which have a legitimate need to access the OBD functions, dongle providers and drivers. OEMs need the ability to protect drivers and manage liability by limiting how a device or software application may modify the operation of a vehicle.
Journal Article

Development of a Lube Filter with Controlled Additive Release for Modern Heavy Duty Diesel Engines Utilizing EGR

2008-10-07
2008-01-2644
As on-highway heavy-duty diesel engine designs have evolved to meet tighter emission regulations, the crankcase environment for heavy-duty engine lubricants has become more challenging. The introduction of Exhaust Gas Recirculation (EGR) has allowed for significant reductions of exhaust emissions, but has led to increased oxidation and acid build-up in the lubricant. Engine lubricant quality is important to help ensure engine durability, engine performance, and reduce maintenance downtime. Increased acidity and oxidation accelerate the rate at which the lubricant quality is degraded and hence shorten its' useful life. This paper explores the use of a lube filter with a controlled additive release to maintain lubricant quality.
Journal Article

Incorporation of Atmospheric Neutron Single Event Effects Analysis into a System Safety Assessment

2011-10-18
2011-01-2497
Atmospheric Neutron Single Event Effects (SEE) are widely known to cause failures in all electronic hardware, and cause proportionately more failures in avionics equipment due to the use altitude. In digital systems it is easy to show how SEE can contribute several orders of magnitude more faults than random (hard) failures. Unfortunately, current avionics Safety assessment methods do not require consideration of faults from SEE. AVSI SEE Task Group (Aerospace Vehicle Systems Institute Committee #72, on Mitigating Radiation Effects in Avionics) is currently coordinating development of an atmospheric Neutron Single Event Effects (SEE) Analysis method. This analysis method is a work in progress, in close collaboration with SAE S-18 and WG-63 Committees (Airplane Safety Assessment Committee). The intent is to include this method as part of current revisions to ARP4761 (Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment).
Journal Article

Incorporating Atmospheric Radiation Effects Analysis into the System Design Process

2012-10-22
2012-01-2131
Natural atmospheric radiation effects have been recognized in recent years as key safety and reliability concerns for avionics systems. Atmospheric radiation may cause Single Event Effects (SEE) in electronics. The resulting Single Event Effects can cause various fault conditions, including hazardous misleading information and system effects in avionics equipment. As technology trends continue to achieve higher densities and lower voltages, semiconductor devices are becoming more susceptible to atmospheric radiation effects. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered. The purpose of this paper is to describe a process to incorporate the SEE analysis into the development like-cycle. Background on the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions is provided.
Technical Paper

Mojacar Brake Wear and NVH: Dyno Simulation Concept

2007-10-07
2007-01-3959
Efficient development and testing of brake systems requires further substitution of expensive and time consuming vehicle testing by appropriate dynamometer testing. Some of the current simulation methods do not reflect the needs of engineering and the progress made in the development of test equipment. The lack of suitable procedures may cause unexpected delays in the realization of projects. Road load simulations for lifetime prediction on brake dynamometers have a long history, however never got a real break-through in Europe - possibly because the prediction quality and efficiency did not satisfy. This paper concentrates first on the analysis of the vehicle data recorded in Mojacar (Spain) which is a sign-off test for wear and noise for brands of Ford Motor Company for European market. Specific attention is given to different types of driving resistances and road profiles and to consideration of different methods for numerical description and comparison of road load data.
Technical Paper

Industry Activities Related to Aircraft Information Security

2007-09-17
2007-01-3919
Commercial transport aircraft have adopted TCP/IP based onboard networking technology to integrate information interchange. This change along with the addition of a TCP/IP based air-ground data link will permit the aircraft network to establish links with ground networks and be integrated into the airline enterprise network. There are many challenging considerations when connecting a remote network to an enterprise network. These challenges are multiplied when that remote network is constantly in motion, both physically and in terms of its link to the ground network. An important consideration in any enterprise network is the element of security. AEEC has published ARINC Report 811: Commercial Aircraft Information Security Concepts of Operation and Process Framework [1] as a guide for the airlines as they consider how to deal with this new challenge.
Technical Paper

Hydrocarbon Adsorber Technology

2007-04-16
2007-01-1434
Various government agencies such as EPA and CARB have established evaporative emission standards for light duty vehicles. To help the OEM's meet these emission standards for volatile organic compounds (VOC's), Honeywell has developed a hydrocarbon adsorber (HCA) approach to reduce hot soak emissions that escape through the air induction system. The HCA has a small footprint and is incorporated in the air filter housing while having a minimal impact on the air flow to the engine during normal operation. As required through EPA regulations it is permanently mounted to provide life of the vehicle durability. In this paper, the process for selecting the VOC adsorbent that functions within the parameters of the hot soak cycle and is regenerated under standard engine operation is discussed. An important part of this technology has been the development of a laboratory test that would simulate engine conditions and permit evaluation of various HCA prototypes.
Technical Paper

Diesel Fuel Desulfurization Filter

2007-04-16
2007-01-1428
The molecular filtration of sulfur components in ultra low sulfur diesel (ULSD) fuel is described. A comprehensive screening of potential sulfur removal chemistries has yielded a sorbent which has the capability to efficiently remove organo-sulfur components in ULSD fuel. This sorbent has been used to treat ULSD fuel on a heavy duty engine equipped with NOx adsorber after-treatment technology and has been shown to lengthen the time between desulfation steps for the NOx adsorber. The fuel properties, cetane number and aromatics content, etc., have not been changed by the removal of the sulfur in the fuel with the exception of the lubricity which is reduced.
Technical Paper

Membrane-Based Humidity Control in Microgravity: A Comparison of Membrane Materials and Design Equations

1997-07-01
972275
A microgravity dehumidification system for plant growth experiments requires the generation of no free-liquid condensate and the recovery of water for reuse. In membrane dehumidification, the membrane is a barrier between the humid air phase and a liquid coolant water. The coolant water temperature combined with a trans-membrane pressure differential establishes a water flux from the humid air into the coolant water. Building on the work of others, we directly compared hydrophilic and hydrophobic membranes for humidity control. Hydrophobic membranes did not meet the required operational parameters. In a direct comparison of the hydrophilic membranes, cellulose ester membranes were superior to metal and ceramic membranes in the categories of condensation flux per surface area, ease of start-up and stability. However, cellulose ester membranes were inferior to metal membranes in one significant category, longevity/durability.
Technical Paper

Optimizing and Integrating Thermal Control Systems for Space Life Sciences Hardware

1997-07-01
972543
Through the development of 35 spaceflight payloads during the last ten years, BioServe Space Technologies has gained valuable practical experience in developing thermal control systems for the microgravity environment. Design constraints imposed by NASA, such as limited power availability, limited material selections, and limited acoustic emissions, coupled with the design constraints imposed by the functional requirements of each payload, impact spaceflight designs in a manner that requires a high degree of optimization. BioServe payloads typically employ thermoelectric coolers (TEC's), air and liquid heat exchangers, a variety of insulation materials, several types of fans and blowers, and various control strategies in order to achieve the desired thermal environment. In the present work methods of selecting thermal system components are discussed.
Technical Paper

Modeling and Analysis of a Phasor-Controlled ME/APU S/G in Motoring Mode

2008-11-11
2008-01-2857
This work deals with the modeling and analysis of a phasor-controlled Starter/Generator (S/G) electrical machine during starting either an aircraft Main Engine (ME) or Auxiliary Power Unit (APU). The model can be used to determine how much stator and exciter current is required to be supplied by a controlled power converter to the S/G to meet the start torque profile. In addition to modeling details and simulation results the paper presents a thorough analysis of the S/G machine, its environment and control.
Technical Paper

Modeling and Analysis of Bus Voltage Control in Aerospace Applications

2008-11-11
2008-01-2868
This work deals with the modeling and analysis of both AC and DC bus voltage control in aerospace applications. The results of the analysis are presented along with system models, including a voltage-controlled current source (vccs) used as a DC Bus controller, a d,q-controlled, IGBT-based, SVPWM-switched, ac-to-dc active converter/rectifier (AR) used as a DC Bus controller, a 3-phase ac generator voltage regulator (VR) used as an AC Bus controller, a 3-phase uncontrolled ac generator followed by an SCR-controlled ac-to-dc converter, used as a DC Bus controller (single-controlled bus), and a 3-phase dynamically-controlled ac generator followed by an SCR-controlled ac-to-dc converter, used to provide both AC and DC Bus control (dual-controlled bus).
Technical Paper

Characterization of a Ported Shroud Compressor using PIV Measurements

2010-04-12
2010-01-1225
Operational ranges of compressors are limited when running at low mass flow. In particular, large pressure fluctuations occur when reaching surge that can cause rapid deterioration of the bearing system and considerably increase the level of noise. In order to extent the operability of their turbochargers, Honeywell equipped its compressor housings with ported shrouds located at the inlet. The ported shroud has been demonstrated to allow a larger range of operability with minor negative impact on the compressor efficiency. In a collaborative work between Honeywell and the University of Cincinnati, a turbocharger bench facility was designed and tested. The size of the compressor was typical for a turbocharger used on diesel engines. The goal of the experimental study was to develop better understanding of the flow dynamic in the compressor housing that affects stall and surge for different operating conditions.
Technical Paper

Advanced Electric Generators for Aerospace More Electric Architectures

2010-11-02
2010-01-1758
This paper discusses the problem of designing electric machines (EM) for advanced electric generators (AEG) used in aerospace more electric architecture (MEA) that would be applicable to aircraft, spacecraft, and military ground vehicles. The AEG's are analyzed using aspects of Six Sigma theory that relate to critical-to-quality (CTQ) subjects. Using this approach, weight, volume, reliability, efficiency, and cost (CTQs) are addressed to develop a balance among them, resulting in an optimized power generation system. The influence of the machine power conditioners and system considerations are also discussed. As a part of the machine evaluation process, speeds, bearings, complexities, rotor mechanical and thermal limitations, torque pulsations, currents, and power densities are also considered. A methodology for electric machine selection is demonstrated. Examples of high-speed, high-performance machine applications are shown.
Technical Paper

Stall Development in a Ported Shroud Compressor using PIV Measurements and Large Eddy Simulation

2010-04-12
2010-01-0184
Surge is a phenomenon that limits the operational range of the compressor at low mass flow rates. The objective of this research is to study effective operational range for a ported shroud compressor. The size of the compressor is typical for a turbocharger used on diesel engines. To be able to extend the operational range, the surge characteristics have to be assessed. This is done by performing measurement of the flow at the inlet to the compressor wheel and pressure fluctuations at the inlet and outlet of the compressor housing. Detailed numerical computations of the flow in the entire compressor section under similar operating conditions have also been carried out. The experimental work includes Particle Imaging Velocimetry (PIV) measurements of the instantaneous and mean velocity field at the inlet. At surge, low frequency pulsations are detected that seem to result from back flow already observed in stall.
Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

2001-04-30
2001-01-1561
The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
Technical Paper

Nitrogen Removal from a Urine-Soap Wastewater Using a Bioprocessor System: Process Monitoring and Control

2002-07-15
2002-01-2353
A detailed study was conducted on nitrification using a bench top bioprocessor system proposed for water recycling of a urine-soap wastewater expected to be generated by crewmembers on International Space Station (ISS) or similar long-term space missions. The bioprocessor system consisted of two packed bed biofilm reactors; one anoxic reactor used for denitrification and one aerobic reactor used for nitrification. lnfluent wastewater was a mixture of dilute NASA whole body soap (2,300 mg/L) and urea (500 mg/L as organic nitrogen). During two months of steady-state operation, average chemical oxygen demand (COD) removal was greater than 95%, and average total nitrogen removal was 70%. We observed that high levels of nitrite consistently accumulated in the aerobic (nitrifying) reactor effluent, indicating incomplete nitrification as the typical end product of the reaction would be nitrate.
X