Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

Seat Common Frame Design Optimization

2010-04-12
2010-01-0390
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
Technical Paper

The development of in-vehicle unit of advanced vehicle information and communication system

2000-06-12
2000-05-0370
This paper presents an in-vehicle information system, AVICS in development. With AVICS, the driver could get the various information on traffic, news, weather, restaurants, and so on, which the AVICS information center provides via mobile telecommunication network. The driver requests the information to operator in center by voice with hands-free system or by handling the menu offered in the form of web-page. The in-vehicle unit for AVICS is designed to interface with wireless network with a built-in RF MODEM, to control NAVI system, and to display the information on the LCD monitor of AV system. The Internet browser is customized to parse specific HTML tags, application software is realized on 32-bit RISC processor. In this paper, we will overview the concept of AVICS and focus on development of in-vehicle unit of AVICS.
Technical Paper

Development of Integrated Chassis Control for Limit Handling

2016-04-05
2016-01-1638
This paper presents the integrated chassis control(ICC) of four-wheel drive(4WD), electronic stability control(ESC), electronic control suspension(ECS), and active roll stabilizer(ARS) for limit handling. The ICC consists of three layers: 1) a supervisor determines target vehicle states; 2) upper level controller calculates generalized forces; 3) lower level controller, which is contributed in this paper, optimally allocates the generalized force to chassis modules. The lower level controller consists of two integrated parts, 1) longitudinal force control part (4WD/ESC) and 2) vertical force control part (ECS/ARS). The principal concept of both algorithms is optimally utilizing the capability of the each tire by monitoring tire saturation, with tire combined slip. By monitoring tire saturation, 4WD/ESC integrated system minimizes the sum of the tire saturation, and ECS/ARS integrated system minimizes the variance of the tire saturation.
Technical Paper

Modeling and Validation of ABS and RSC Control Algorithms for a 6×4 Tractor and Trailer Models using SIL Simulation

2014-04-01
2014-01-0135
A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research.
Technical Paper

Optimization of the Crashworthiness of a Passenger Car Using Iterative Simulations

1993-11-01
931977
The paper describes an engineering project carried out to optimize the crashworthiness of an existing passenger car for frontal crash using a procedure relying on numerical simulation. An optimization target is defined in terms of an ideal acceleration pulse at the seats anchors. The acceleration time history and structural members are scanned in parallel to correlate the local acceleration peaks to specific structural members. Members details are iteratively modified in order to alter the accelerations and get closer to the target.
Technical Paper

Energy-Optimal Deceleration Planning System for Regenerative Braking of Electrified Vehicles with Connectivity and Automation

2020-04-14
2020-01-0582
This paper presents an energy-optimal deceleration planning system (EDPS) to maximize regenerative energy for electrified vehicles on deceleration events perceived by map and navigation information, machine vision and connected communication. The optimization range for EDPS is restricted within an upcoming deceleration event rather than the entire routes while in real time considering preceding vehicles. A practical force balance relationship based on an electrified powertrain is explicitly utilized for building a cost function of the associated optimal control problem. The optimal inputs are parameterized on each computation node from a set of available deceleration profiles resulting from a deceleration time model which are configured by real-world test drivings.
Technical Paper

Optimization of Slot Disc Shape for Improving Brake Fade Performance

2018-10-05
2018-01-1883
Due to improvements in vehicle powertrain performance, friction material fade performance is becoming an important topic. For this reason, needs for studies to improve thermal characteristics of the brake system is increasing. Methods for improving the fade characteristics have several ways to improve the thermal characteristic of friction materials and increase disc capacity. However, increasing disc capacity(size) have some risk of weight and cost rise, and friction factor improvements in friction material tend to cause other problems, such as increasing squeal wire brush noise and increasing metal pick up on disc surface. Therefore, a slot disc study is needed to overcome the problems discussed previously. Currently, there is few research history for slot disc related to fade and metal pickup improvements.
Journal Article

Electro-Mechanical Brake for Front Wheel with Back-up Braking

2014-09-28
2014-01-2538
Electro-Mechanical Brake (EMB) is the brake system that is actuated by electrical energy and has a similar design with the Electric Parking Brake (EPB). It uses motor power and gears to provide the necessary torque and a screw & nut mechanism is used to convert the rotational movement into a translational one. The main difference of EMB compared with EPB is that the functional requirements of components are much higher to provide the necessary performance for service braking such as response time. Such highly responsive and independent brake actuators at each wheel lead to enhanced controllability which should result in not only better basic braking performance, but also improvements in various active braking functions such as integrated chassis control, driver assistance systems, or cooperative regenerative braking.
X