Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 5 of 5
2011-05-17
Technical Paper
2011-01-1563
Ki-Hwa Lee, Chung-Guen Nam, Hyung-Shin KIm, Dong-Kyu Yoo, Koo-Tae Kang
A comprehensive investigation was carried out in order to develop the idle sound quality for diesel V6 engine when the engine development process is applied to power-train system, which included new 8-speed automatic transmission for breaking down the noise contribution between the mechanical excitation and the combustion excitation. First of all, the improvement of dynamic characteristic can be achieved during the early stages of the engine development process using experimental modal analysis (EMA) & the robust design of each engine functional system. In addition, the engine structural attenuation (SA) is enhanced such that the radiated combustion noise of the engine can be maintained at a target level even with an increased combustion excitation. It was found that the engine system has better parts and worse parts in frequency range throughout the SA analysis. It is important that weak points in the system should be optimized.
1996-02-01
Technical Paper
960426
Dong Hoon Park, Tae Seok Seo, Do Gi Lim, Hee Bock Cho
This paper introduces mathematical equations for power loss calculations of major automatic transmission components. It also presents a theoretical investigation on contributions of each component's power loss to transmission total power losses. A computer program for automatic transmission efficiency calculation has been developed based on mathematical equations. Efficiency calculations for the Hyundai A4BF1 electronic 4 speed automatic transmission has been executed in order to validate the program. The calculated efficiency under various input and operating conditions - such as different input torque & RPM, transmission gear state, ATF temperature, torque converter clutch on/off - showed quite good agreement with the test results.
1996-02-01
Technical Paper
960447
Hae-Woo Park, Chang-Seok Han, Chul-Soo Kim, Bong-Ho Lee, Young-Woo Kim, Paul R Gifford
Abstract The development of a high-performance battery and safe and reliable charging methods are two important factors for commercialization of the Electric Vehicles(EV) Hyundai and Ovonic together spent many years in the research on optimum charging method for Ni-MH battery This paper presents in detail the results of intensive experimental analysis, performed by Hyundai in collaboration with Ovonic An on-board Ni-MH battery charger and its controller which are designed to use as a standard home electricity supply are described In addition, a 3 step constant current recharger with the temperature and the battery aging compensator is proposed This has a multi-loop algorithm function to detect its 80% and fully charged state, and carry out equalization charging control The algorithm is focused on safety, reliability, efficiency, charging speed and thermal management (maintaining uniform temperatures within a battery pack) It is also designed to minimize the necessity for user input.
2009-04-20
Technical Paper
2009-01-0228
Sangjoon Kim, Joonyoung Park, Jeongho Hong, Myungwon Lee, Hyunsung Sim
Transient control for EV/HEV mode change takes an important role in the system of the parallel HEV, which consists of internal combustion engine (ICE), electric motor (EM), integrated starter & generator (ISG), battery, automatic transmission and clutch (that replaces the torque converter), not only ICE/EM control but also clutch engagement control are the key of it. To improve the mode change performance, this study proposes clutch slip control methods. Method 1. focuses on the open loop clutch pressure control so as to adjust target clutch transfer torque. The main idea of Method 2. is to control the clutch pressure in order to achieve the desired speed difference(Method 2-1) from each side of clutch when motor speed is faster than engine idle speed and keep target engine speed(Method 2-2) when motor speed is slower than engine idle speed. This paper defines control sequence which is scheduling the behavior of powertrain components as well.
2016-04-05
Technical Paper
2016-01-1071
Sangchul Lee, SeongMin Park, Changsun Hwang
Abstract A low pressure exhaust gas recirculation system (LP EGR system) enables the expansion of the EGR operating area than that of the widely used high pressure EGR system. As a result, fuel consumption and emissions can be improved. In order to meet the EU 5 emissions regulations, an exhaust throttle LP EGR system was used. The EU5 vehicles developed using this system have greater merits than other vehicles. However, because the exhaust throttle LP EGR valve is installed adjacent to the after-treatment system, the material of the LP EGR valve itself must be stainless steel in order to withstand the thermal stress, consequently, the cost is increased. Therefore, in order to achieve cost rationalization for EU6 vehicles, an intake throttle LP EGR system is developed and applied to replace the exhaust throttle LP EGR system. In order to apply the intake throttle LP EGR system, the EGR valve is installed in front of the turbo charger compressor.
Viewing 1 to 5 of 5