Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Development of an Air Support System for Long-Distance Drive Comfort

2020-04-14
2020-01-0868
Passenger fatigue during long distance driving is greatly influenced by the comfort performance of the seat. Seat comfort performance is determined by the appropriate contour of the seat and the appropriate pad with sufficient thickness. The height of vehicle has been lowered to enhance car styling, and battery for electric vehicle applied to the underbody of the vehicle, reducing the package space of the seat in the vehicle. These external factors eventually lead to a reduced pad thickness of the seat cushion and compromise one of the important components in the seat cushion compartment, creating an uncomfortable cushioning problem when driving long distances. To improve the cushion composition of the seat within a limited package, air bladders are applied to the underside of the cushion pad. In addition, the function to support the buttocks using the air bladders of the lower cushion, similar to lumbar support for the back, was implemented to improve cushion comfort performance.
Journal Article

Study of Optimizing Sliding Door Efforts and Package Layout

2017-03-28
2017-01-1302
A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Reduction of Aeolian Noise from Roof Rack Crossbars Using Asymmetric Cross-Section Geometry

2002-03-04
2002-01-1275
Roof racks have become a very popular feature of vehicles as the market demand for SUV's and RV's has increased drastically over the years. Aeolian tone from the cross bars however, could be a source of severe discomfort for the passengers. Both experimental and numerical steps are taken to enhance the understanding of the generation mechanism of the wind noise. A successful reduction of the noise is achieved by imposing asymmetry in the section geometry, which reduces the strength of Karman vortices shed downstream.
Technical Paper

Multi-Disciplinary Vehicle Styling Optimization: All at Once Approach for Stiffness, Light-Weight and Ergonomics with Analytical Model Based on Compartment Decomposition

2003-03-03
2003-01-1330
The topology optimization made a great success in pure structural design in an actual industrial field. However, a lot of factors interact each other in a actual engineering field in highly complicated manner. The typical conceptual trade-off is that cost and performance, that is, since they are competing factors, one can't improve the specific system without consideration of interaction. The vehicle has lots of competing factors, especially like fuel economy and acceleration performance, mass and stiffness, roominess and cost, short front overhang and crash-worthiness and so on. In addition, they interact each other in a more complicated manner, that is, fuel economy has something to do with not only engine performance but also mass, roominess, stiffness, the length of overhang, trunk volume, etc. So, most of decision-makings have been made by management based on subjective knowledge and experience.
Technical Paper

Ride Comfort Improvement of a Compact SUV Considering Driving Maneuver and Road Surface

2011-04-12
2011-01-0558
In general, the ride and handling characteristics of a vehicle are strongly dependent on chassis parameters that come from the kinematic and compliance properties of a suspension system. For ride comfort improvement of a compact SUV with increasing handling performance simultaneously, this research proposes a new quantitative approach by considering various driving maneuvers and road surfaces. Particularly, five different road surfaces were used for ride comfort analysis, and this analysis was performed for two different vehicle speeds on a cleat road profile and three different vehicle speeds on a rough road profile. The contribution analysis of a suspension and a seat structure to ride comfort was investigated in order to decide an optimal structural combination. It was shown that contribution of each factor is different according to road profiles and driving conditions respectively.
Technical Paper

An Improvement Research of Under-floor of Midsize Sedan-Focusing on 2010 New YF Sonata Development Examples-

2011-04-12
2011-01-0772
Hyundai Kia Motors started developing the under-floor of YF sonata, the base platform for mid-to-large size sedans, in order to reduce weight and improve body performance. For local dynamic rigidity, there are design improvement and additional support structures at suspension mounting area. The strength at the joint where longitudinal and transverse members meet is increased to improve the overall body stiffness, and also the riding comfort and handling. Impact performance and safety is also improved by straightening the major structural members and strengthening the joint areas, efficiently absorbing and inducing the impact energy through load paths. As the body of a vehicle is the constitution of numerous parts, increased strength at the joints and major structural members with more linear profiles have played crucial roles in the improvement in overall body performance.
Technical Paper

A Study of Layout Regarding Integrated Controls on the Steering Wheel

2013-03-25
2013-01-0036
In order to utilize in-vehicle systems efficiently, many vehicles are becoming equipped with integrated controls near the center fascia or the control box. However, the placement of these control systems can cause safety issues and risks due to visual distractions. In this study, we proposed a new integrated touch screen on the steering wheel. For this experiment, a control system was placed on the steering wheel or the center fascia. 15 participants were required to drive while utilizing vent and navigation control tasks regarding four different locations. Three of these locations were based on the steering wheel (center, upper right, lower right) and one location on the center fascia. Afterwards, the task completion time and visual distraction rate of the different locations were measured and compared. The results showed that a touch screen placed on the upper right section of the steering wheel had better performance and lower user discomfort.
Technical Paper

A Study on the Development Process of a Body with High Stiffness

2005-05-16
2005-01-2464
Design optimization of a vehicle is required to increase a product value for noise and vibration performances and for a fuel-efficient car. This paper describes the development process of a high stiffness and lightweight vehicle. A parameter study is carried out at the initial stage of design using the mother car, and a design guide with a good performance is achieved early prior to the development of the proto car. Influences of body stiffness based on the relative weight ratio of the floor and side structures are analyzed. Results show that bending and torsional stiffness has a significant effect on weight distribution ratio. Influences of the distribution of side joint stiffness are analyzed through numerical experiments. Results reveal that the stiffness difference between the upper and lower parts should be small to increase the stiffness of a body.
Technical Paper

3rd Generation Genesis Seat Development

2022-03-29
2022-01-0811
Based on the success of the second-generation Genesis G80 model, Hyundai Motor has declared the independence of Genesis as a luxury car brand in 2015. The third-generation G80 is the representative model of the Genesis brand and has a unique identity of Genesis that can surpass its competitors. In addition, it was necessary to develop seats that were considered not only for ICE but also for the scalability of electric vehicles. A newly formed Genesis organization established the Genesis design philosophy of its own. Four key elements of the design philosophy were comfort, aesthetics, usability and safety. The third-generation Genesis seats incorporate its design philosophy of seat design and new technologies based on comfort, aesthetics, usability, and safety. This paper describes the seat development of the Ergo Motion seat, Rear Seat Relaxtion(Relax + Position), Seat Syling, AVN switch display and PSS(pre-active safety seat )system, which are representative technologies.
Technical Paper

Next Generation Seat Ventilation System for Genesis EV

2023-04-11
2023-01-0911
The shift towards electric vehicles is gaining pace to address carbon neutrality and environmental concerns. New technologies are being developed to cater to the unique features of EVs, such as the low indoor noise at low speeds, which require a low-noise ventilation system. A new dual-blower type system was developed to solve the problem of seat-bottom package caused by battery placement in the vehicle. This system uses two blowers, one for the cushion and one for the back, and reduces RPM to lower high-frequency noise. A new solution was introduced for temperature drop performance in the ventilation system. An integrated controller was also developed to control the seat warmer and ventilation system, with a smart control function added to respond to vehicle speed and ventilation time based on customer usage. As a result, this new ventilation system improves air volume, reduces noise, improves foot space, and reduces the number of parts compared to the previous system.
Technical Paper

Research on Mechanism of Seat Back Reclining Linked to Cushion for Enhancing the Comfort of Rear Seat

2018-04-03
2018-01-1315
This paper suggests the new mechanism of rear seat reclining that enhances the comfort. This mechanism enables rear seat back to recline backward with cushion moving forward and upward simultaneously, which makes the rear seat more relaxing. Also this mechanism was developed to have many advantages, especially in the aspect of cost, weight and package layout.
Technical Paper

A Study on Improvement of Sitting Posture Stability for Heavy Truck Drivers

2018-04-03
2018-01-1319
The driver’s seat in heavy trucks is designed for an upright driving posture with narrow back and cushion angles; thus, the seatback offers very little support. This makes the sitting posture prone to shifting during long trips, leading to loss of comfort and increase in fatigue. Sitting posture stability allows initial posture to be maintained during long drives, and the lack of stability causes fatigue and body pain during the drive. This study confirmed that enhancement of sitting posture stability of the driver’s seat in heavy trucks requires appropriate support from the cushion. The study also analyzed the support characteristics of each part of the cushion, and presented development guidelines of new cushion. Although subjective assessments of sitting posture stability have been performed, this study presented a method for quantitative and efficient assessment of sitting posture stability using the PAM-COMFORT simulation tool and virtual testing.
Technical Paper

Development of an Automated Seat Dimension Evaluation System

2019-04-02
2019-01-0401
The dimensions of an automobile seat are important factors affecting a driver’s seating comfort, fit, and satisfaction. In this regard, seat engineers put forth tremendous efforts to evaluate the dimensions of a product seat until the dimensions are consistent with the design reference in a computer aided design (CAD). However, the existing evaluation process is heavily reliant on seat engineers’ manual tasks which are highly repetitive, labor intensive, and time-demanding tasks. The objective of this study is to develop an automated system that can efficiently and accurately evaluate seat products by comparing estimated seat dimensions from a CAD model or a 3D scan model. By using the developed system, the evaluation time for comparing 18 seat dimensions on CAD and scan models has been substantially reduced to less than one minute, which is 99% time saving compared to two hours in the manual process.
Journal Article

Development of Logistic Regression Models to Classify Seat Fit

2020-04-14
2020-01-0869
The digital evaluation process of vehicle-seat dimensions is an efficient and cost-effective way to achieve better seating comfort and proper fit. The present study is intended to quantify the statistical relationships between seat dimensions (e.g., insert width and bolster height defined at SAE J2732) and subjective seat fit (e.g., too tight, right fit, or too wide). Subjective fit evaluations for 45 different vehicle seats and the corresponding vehicle seat dimensions at various cross-sectional planes were collected by seat engineers (experts). The best subset logistic regression analyses were applied to quantify the relationships between the collected expert evaluations and seat dimensions at each cross-sectional plane. As a result, significant seat dimensions on the seat fit were identified and their statistical relationships were quantified as regression coefficients.
Technical Paper

Driver Mental Stress in Response to Thermal Stress Change during Highway Driving

2023-04-11
2023-01-0146
Monitoring driver thermal stress is an integral step for developing an automated climate control function. In this experimental study, various physiological measures for driver’s thermal stress were tracked while intentionally by altering thermal conditions of the seat with a seat air conditioning system (ACS) in summer and a seat heating system (HS) in winter. It was aimed to determine reliable physiological measures for identifying the changes in thermal status induced by the two seat climate control systems. In the first experiment, twenty experienced drivers drove a comfortable sedan for 60 minutes on a real highway while varying the intensity of the seat ACS every 10 minutes to incur ‘hot’ – ‘cool’ – ‘hot’ – ‘cool’ thermal stress. In the second experiment, a new group of eighteen drivers drove the same highway for 30 minutes while increasing the intensity of seat HS to incur ‘cold’ to ‘warm’ thermal stress.
Technical Paper

A Study on the Evaluation of UX of Mid SUV

2024-04-09
2024-01-2460
In recent years, with the advent of the Fourth Industrial Revolution and the COVID-19 pandemic, people's lives worldwide have undergone significant changes. Additionally, the emergence of a new generation of consumers known as the millennial generation has led to a high demand for multipurpose family cars. The perspective is shifting towards choosing premium products that enhance the quality of life and pursue their own happiness and comfort through technology, rather than simply selecting a midsize SUV based on the increase in family size. We aim to meet the needs of these global customers by conducting research and developing various new features that were not previously available in midsize SUVs. In this study, we defined the actual target users for midsize SUVs and established UX concepts by analyzing their characteristics. Based on this, we employed an optimal design approach by analyzing the evaluation results by country for the various features implemented within the vehicle.
X