Refine Your Search

Topic

Author

Search Results

Journal Article

Direct Sound Radiation Testing on a Mounted Car Engine

2014-06-30
2014-01-2088
For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Journal Article

Development of Fatigue Durability Analysis Techniques for Engine Piston using CAE

2009-04-20
2009-01-0820
A piston in a diesel engine is subject to the high pressure and the high thermal load. The high structural reliability is required to the piston in the automotive diesel engine and it is important to confirm the design parameters of piston in initial design stage. There are lots of research works proposing new geometries, materials and manufacturing techniques for engine pistons. But, the failures of piston occur frequently in development stage. Failure mechanisms are mainly fatigue related. This paper presents failure mechanisms of the high cycle fatigue and low cycle thermal fatigue cracks which occur on the piston during durability test using engine dynamometer. In this study, FE analysis was carried out to investigate the root cause of piston failure. The analysis includes the FE model of the piston moving system, temperature dependent material properties, mechanical and thermal loadings.
Journal Article

Development of Nano Diamond Polymer Coating on Piston Skirt for Fuel Efficiency

2011-04-12
2011-01-1401
Various polymer-based coatings are applied on piston skirt to reduce friction loss between the piston skirt and cylinder bore which is one of main factors of energy loss in an automotive engine system. These coatings generally consist of polymer binder (PAI) and solid lubricants (graphite or MoS₂) for low friction property. On the other hand, the present study found that PTFE as a solid lubricant and nano diamond as hard particles can be used to improve the low friction and wear resistance simultaneously. In the process of producing coating material, diamond particles pulverized to a nano size tend to agglomerate. To prevent this, silane (silicon coupling agent) treatment was applied. The inorganic functional groups of silane are attached to the nano diamond surface, which keep the diamond particles are apart.
Technical Paper

Control of Automotive PEM Fuel Cell Systems

2007-08-05
2007-01-3491
In order to understand the automotive PEM fuel cell system, mathematical system modeling is conducted and the model is implemented and simulated by using the Matlab®/Simulink®. The components such as fuel cell stack, air supplier, and radiator are modeled individually and integrated into a system level. The PEM fuel cell system operation control includes thermal management, air supply control, hydrogen supply control, fuel cell stack protection control, and load following control. In the thermal management, the inlet and outlet temperature of coolant are controlled to operate the fuel cell stack in desired temperature range and to prevent flooding inside the fuel cell stack. In air supply control and hydrogen supply control, the flow rates of air and hydrogen are controlled not to starve the fuel cell stack according to the output current. A control structure for the system is developed and confirmed by using the developed simulation model.
Technical Paper

Partial Elasto-Hydrodynamic Lubrication Analysis for Cylindrical Conformal Contact Model Considering Effect of Surface Wave

2007-08-05
2007-01-3533
Numerous machine elements are operated in mixed lubrication regime where is governed by a combination of boundary and fluid film effects. The direct contact between two surfaces reduces a machines life by increasing local pressure. In order to estimate machine's life exactly, the effect of asperity contact should be considered in the lubrication model. In this study, new 3-dimensional partial elasto-hydrodynamic lubrication (PEHL) algorithm is developed. The algorithm contains the procedures to find out solid contact regions within the lubricated regime and to calculate both the pressure by fluid film and the contact pressure between the asperities of the solids. Using the algorithm, we conducted the PEHL analysis for the contact between the rotating shaft and the inside of pinion gear. To investigate the effect of surface topology two different surfaces with sinusoidal profile are used. Both film thickness and pressure are calculated successfully through the PEHL algorithm.
Technical Paper

Design and Development of a Spray-guided Gasoline DI Engine

2007-08-05
2007-01-3531
Adopting the Spray-guided Gasoline Direct Injection (SGDI) concept, a new multi-cylinder engine has designed. The engine has piezo injectors at the central position of its combustion chamber, while sparkplugs are also at the center. The sparkplug location is designed so that the spark location is at the outer boundary of the fuel spray where the appropriate air-fuel mixture is formed. A few important operating parameters are chosen to investigate their effects on the combustion stability and fuel consumption. The final experimental results show a good potential of the SGDI engine; the fuel consumption rate was much less than that of the base Multi Port Injection (MPI) engine at various engine operating conditions.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

A Study on the Influence of Plastic Intake Manifold on the Performance and NVH of In-line 4 Cylinder Gasoline Engine

1998-02-01
980728
The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. Moreover, the use of plastic for intake manifold is regarded as a key for further development of so called an “intake modular system”. As a secondary effect, the engine power can be increased with the help of improved interior surface roughness and lowered air temperature. With regard to NVH, however, plastic intake manifold is considered somewhat negative since it is less rigid and less dense than aluminum one. In this paper, the mechanism that plastic intake manifold affects the performance and NVH of in-line 4 cylinder gasoline engine is presented. In connection with engine performance, air flow efficiency of not only intake manifold itself but also other components of intake system and also cylinder head is evaluated.
Technical Paper

Study of Sealing Mechanism to Prevent Oil Leakage for the Thermoplastic Cylinder Head Cover

2007-04-16
2007-01-0566
Most of car makers nowadays produce Cylinder Head Cover with Thermoplastic to get the benefit of weight and cost reduction. The production of Cylinder Head Cover with Thermoplastic brings a number of benefits such as enhancement in productivity, design freedom, integration with other parts and reduction in weight. However, NVH characteristics, sealing performance issues possibly caused by design of cover and gasket and loss of properties of materials when used for long-term period still remain as critical tasks to be solved. Especially in case of car OEMs strongly insist that we have to meet their severe specifications requirements so as to satisfy their customers' growing demand. Sealing performance is one of the core factors, which require continuous effort and studies to meet the OEM's specifications.
Technical Paper

Development of High Wear Resistant and Durable Coatings for Al Valve Spring Retainer

2007-04-16
2007-01-1748
The use of light-weight materials in automotive engine components has increased in order to achieve better fuel efficiency and engine performance. In this study, Al alloy (AI5056) valve spring retainer can reduce a weight by 63% in comparison to steel and improve the upper limit of engine speed by about 500rpm. The Al valve spring retainer was fabricated by cold forging and coated with hard anodizing, DLC (diamond like coating), cold spray and thermal spray for better wear resistance and durability. We conclude that among these materials the DLC coating improves the wear resistance of Al valve spring retainer and has a sufficient durability after endurance testing.
Technical Paper

E3 System – A Two speed Accessory Belt Drive System for Reduced Fuel Consumption

2008-06-23
2008-01-1521
All vehicles have some or all accessories such as alternators, air conditioner compressors, power steering pumps, and water pumps. These devices are mounted on the front of the engine and are powered by a pulley mounted on the front of the crankshaft. This power represents a parasitic loss and this loss is greater at higher engine speeds. To reduce the impact of the accessories on the engine, a two speed transmission that reduces the accessories speed at off-idle conditions was designed, implemented, and tested on several vehicles. The vehicles were tested for fuel economy on the Japanese 10.15 Mode driving cycle, the FTP75 city cycle, and the HWFET Highway Cycle. Results showed an average of 5% reduction in fuel consumption and a corresponding 5% in CO2 with no impact of accessory performance and vehicle drivability. Simulations with GT-Drive software was used to determine the optimum speed reduction and the threshold switching speed that maximizes fuel savings.
Technical Paper

Development of Mild Hybrid City Bus with a Single Voltage Source of 28 V

2008-04-14
2008-01-0086
The most popular issues nowadays in the automotive industry include reduction of environmental impacts by emission materials from automobiles as well as improvement of fuel economy. This paper deals with development of a ¡mild-hybrid¡ system for a city bus as an effort to increase fuel economy in a relatively reasonable expense. Three different technical tactics are employed; an engine is shut down at an engine idle state, a vehicle kinetic energy when the bus is decelerated is re-saved to a battery in the form of electricity, and finally the radiator cooling fan is operated by an electric motor using the saved electric energy with an optimal speed control. It has been demonstrated through the driving tests in a specific city mode, ¡Suwon city mode¡, that an average fuel economy is improved more than 12%, and the system can be a feasible choice in a city bus running in a city mode experiencing many stop and go¡s.
Technical Paper

Analysis of the In-Cylinder Flow, Mixture Formation and Combustion Processes in a Spray-Guided GDI Engine

2008-04-14
2008-01-0142
The purpose of this paper is to investigate the air/fuel mixture formation and combustion characteristics in a spray-guided GDI engine using a commercial code, STAR-CD. This engine adopted the outwardly opening injector located in the center of cylinder head, which forms a hollow cone spray. The spray injection was modeled arranging multiple points using random function along the ring-shaped nozzle exit. To predict the breakup of spray, Reitz-Diwakar's breakup model was used, and the model constants were calibrated against published experimental data in a constant volume chamber. The validated spray models were applied to the analysis of spray behavior and mixture formation process inside the engine combustion chamber under operating condition of ultra-lean mixture (λ ≈ 4). To predict the combustion process, the modified eddy breakup combustion model was applied.
Technical Paper

The Aesthetic Analysis of Sporty Design Factors in a Sports Car

2008-04-14
2008-01-0563
The design of a product is becoming more important and it affects product preference and buying decision. The objectives of this study are first to determine the major elements affecting the feeling of exterior design from aesthetic engineering point of view, and then to extract the highly correlated design factor within the experimental result. Firstly, the buying preference is highly affected by the dynamic and elegant factors. Through deepening analysis using only 2-door type car, the ‘Cowl and Deck Point Angle * Overall Length / Overall Height’ factor is highly positive correlated, and the ‘Rear Overhang’ factor is highly negative correlated with buying preference. There are three special features of a sports car; firstly, stable (long wheel base) and aggressive (lean towards the front) design makes consumers feel dynamic. Secondly, the consumers prefer modern and sedan-like coupe design. Thirdly, sleek design line and consistent character line are preferred.
Technical Paper

Development of Low-Noise Cooling Fan Using Uneven Fan Blade Spacing

2008-04-14
2008-01-0569
When unifying the functions of widely used two-fan, engine cooling system into a single fan unit, the noise and power issues must be addressed. The noise problem due to the increased fan radius is a serious matter especially as the cabin noise becomes quieter for sedans. Of the fan noise components, discrete noise at BPF's (Blade Passing Frequency) seriously degrades cabin sound quality. Unevenly spaced fan is developed to reduce the tones. The fan blades are spaced such that the center of mass is placed exactly on the fan axis to minimize fan vibration. The resulting fan noise is 11 dBA quieter in discrete noise level than the even bladed fan system.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting

2009-05-19
2009-01-2233
The efficiency of a gap-type of deflector for suppressing vehicle sunroof buffeting is studied in this work. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using a CFD/CAA numerical method based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution. In this study the same gap-type deflector configuration is installed on two different types of vehicles, a SUV and a sedan.
Technical Paper

Characteristics of the Luxury Sound Quality of a Premium Class Passenger Car

2009-05-19
2009-01-2183
Luxury sound is one of the most important sound qualities in a premium passenger car. Previous work has shown that, because of the effects of many different interior sounds, it is difficult to evaluate the luxury sound objectively by using only the A-weighted sound pressure level. In this paper, the characteristics of such sound were first investigated by a systematic approach and a new objective evaluation method for luxury sound-the luxury sound quality index--which was developed by the systematic combination of the seven major interior sound quality indexes based on path analysis. The seven major sounds inside a passenger car were selected by a basic investigation evaluated by the members of a luxury automotive club. Seven major interior sound quality indexes were developed by using sound metrics, which are the psychoacoustic parameters, and the multiple regression method used for the modeling of the correlation between objective and subjective evaluation.
Technical Paper

Reduction of Interior Booming Noise for a Small Diesel Engine Vehicle without Balance Shaft Module

2009-05-19
2009-01-2121
Applying BSM (Balance shaft module) is a very common and effective way to reduce the 2nd-order powertrain vibration which is caused by the ill-balanced inertia force due to the oscillating masses inside an engine. However, the adoption of a BSM can also produce undesirable things especially in cost, fuel economy, starting performance, and so on. Therefore, for small vehicles, in which case cost and weight are key factors at the development stage, it is often required to develop competitive NVH performance without the expensive apparatus like a BSM. In this paper, in order to develop interior noise and vibration of a 4-cylinder vehicle without a BSM, we analyzed the contribution of some transfer paths for powertrain vibration, and could reduce interior booming noise by tuning the dynamic characteristic of the engine mount which was one of the largest transfer paths.
X